OLTP/GEC-IOPS seminar December 19th, 2023

Modeling plasmas for CO₂ conversion: from fundamental data to applications

Luca Vialetto

Plasma Dynamics Modeling Laboratory (PDML) Stanford Energy Postdoctoral Fellow, Aeronautics and Astronautics, Stanford University (United States)

- Introduction to plasma-assisted CO₂ conversion
- Inverse problems in plasma physics:
 - Electron swarm analysis
 - Power deposition in CO₂ microwave discharges
- Summary and conclusions

What are you breathing right now?

[https://sciencenotes.org/chemical-composition-air/]

The modern fuels and chemicals industry

- Methanol
- Ethanol
- Hydrogen
- Hydrocarbons
- Ammonia

[T. Jaramillo, ESW New Energy Carriers and Fuels, oral presentation, Stanford (2023)]

Cheap electrons are coming...

[Lazard's Levelized Cost of Energy Analysis, U.S. Energy Information Administration (2021)]

Can we leverage renewable electricity and H_2 to regenerate liquid fuels from CO_2 ?

[E. Dundar-Tekkaya, Y. Yurum, *Int. J. Hydrogen Energy***41**, 9789-9795 (2016)] [O. Guaitella, OLTP Seminar, 2021]

Scientific feasibility

Renewable electricity is used to dissociate CO₂

Technological feasibility

Distributed, sustainable, chemical production

Plasma-assisted CO₂ splitting

Economical feasibility

Microwave discharges seem to offer high(est) energy efficiency. However...

[A. Bogaerts and G. Centi, Front. Energy Res. 8, 111 (2020)]

We cannot design what we don't understand!

Microwave setup @ 2.45 GHz (up to 1000 W input MW power)

- Lack of fundamental data
- Complex chemistry
- Complex gas flow dynamics

The challenge of inverse problems

- Lack of fundamental data
- Goal: to unfold fundamental data from measurements and models

ill-posed problem

The challenge of inverse problems

- Lack of fundamental data
- Goal: to unfold fundamental data from measurements and models

A look at a swarm experiment

[Donko et al., Plasma Sources Sci. Technol. 28, 095007 (2019)]

Swarm analysis

An iterative procedure is employed to derived electron-impact cross sections:

[S. Dujko, Plasma Seminar, Eindhoven (the Netherlands), 2021]

(Popular) methods for solutions of the electron Boltzmann equation

Direct numerical solutions

- Two-term approximation
- [G.J.M. Hagelaar and L.C. Pitchford, *PSST* **14**, 722-733 (2005)]
 - Multi-term approximation
- [J. Stephens, *J. Phys. D: Appl. Phys.* **51**, 125203 (2018)]

Monte Carlo simulations

[S. Longo, PSST 15, S181-S188 (2006)]

The problem of electron transport in CO

- Large discrepancy between numerical results and experiments
- Are cross sections for electrons in CO accurate?

The problem of electron transport in CO

- Large discrepancy between numerical results and experiments
- Are cross sections for electrons in CO accurate?

Anisotropic treatment of rotational collisions

- At low energy, rotational (dipole) collisions are not isotropic
- Different assumptions for the angular scattering distributions are used

Influence of anisotropic scattering on electron drift

Large discrepancies between the models and experiments are found when changing the angular scattering model

[L. Vialetto et al., PSST30, 075001 (2021)]

Implementation in a two-term Boltzmann solver

 Anisotropic scattering can be included in two-term Boltzmann solver by modification of the "effective" cross section:

• The anisotropic scattering term have been implemented also in the open-source code LoKI-B [1,2]

Results using a two-term Boltzmann solver (LoKI-B)

- Remember to check validity of cross sections set with (measured) electron transport parameters!
- Besides CO, anisotropic scattering of electrons plays an important role also for NO ^[1], H₂O ^[2,3], NH₃ ^[4]
- Anisotropic scattering in multi-term Boltzmann solver has now been implemented ^[5]

[1] V. Laporta, L. Vialetto, V. Guerra, *PSST***31**, 054001 (2022)
[2] M. Budde, T.C. Dias, L. Vialetto, *et al.*, *J. Phys. D: Appl. Phys.***55**, 445205 (2022)
[3] M. Budde, T.C. Dias, L. Vialetto, *et al.*, *J. Phys. D: Appl. Phys.***56**, 255201 (2023)
[4] R. Snoeckx, J. Tennyson, M. Suk Cha, *PSST***32**, 115020 (2023)
[5] M. Flynn, L. Vialetto, A. Fierro, A. Neuber, J. Stephens, *submitted*

Understanding plasma contraction is important for maximization of CO₂ conversion

Modeling CO₂ microwave plasmas

A multi-physics model is required for accurate modeling **Major challenge**: how to model diffuse and contracted plasma?

Electromagnetism

- MW cavity
- Power deposition

Radiation

- Spontaneous emission
- Stimulated emission

Transport

- Mass
- Momentum
- Energy

Chemistry

- Thermal chemistry
- Vibrational kinetics
- Electron kinetics

A 1-D radial fluid model has been developed for diffuse and contracted plasmas

INPUT: deposited power density, electron-impact cross sections, heavy species rate coefficients

OUTPUT: species molar fractions, T_e, T_{gas}

The Monte Carlo Flux method

- [G. Schaefer and P. Hui, J. Comput. Phys. 89, 1-30 (1990)]
 [L. Vialetto, S. Longo, P. Diomede, PSST28, 115015 (2019)]
 [L. Vialetto, P. Viegas, S. Longo, P. Diomede, PSST29, 115006 (2020)]
- [L. Vialetto, H. Sugawara, S. Longo, in preparation]

Gas temperature in diffuse and contracted regimes

Charged species radial profile

29

Net electron loss rates

Diffuse Dissociative attachment of electrons Electron loss rates $(10^{23} \text{ m}^{-3} \text{ s}^{-1})$ $(1) e + CO_2 \rightarrow CO + O^-$ (2) $e + CO \rightarrow C + O^{-}$ $(3) e + O_2 \rightarrow O + O^ (4) e + CO_2^+ \rightarrow CO + O$ 3 $(5) e + CO^+ \rightarrow C + O$ (6) $e + O_2^+ \rightarrow O + O$ - - Radial transport e 2 100 mbar 0 12 0 2 6 8 10 Radial position (mm)

Contracted

Electron-ion recombination

As pressure increases:

- T_{gas} increases in the core from 3000 K to 6000 K
- Change in neutral species composition:
 - Favors associative ionization over electron impact ionization
- Change in charged species composition:
 - From molecular (O_2^+) to atomic ions (O^+)
 - Reduced electron transport with increasing pressure

GREEN FUEL FOR CHEMICAL INDUSTRY

Cat PROJECT

ng for plasma models

1 1

YouTube

Can AI Do All Of This Faster?

PLASMA CHEMISTRY

Conclusions

• Inverse problems are often encountered in plasma physics and chemistry

• Currently, the solution of those problems is based on physical intuition

• New (unbiased) approaches are required for estimation of fundamental data or internal plasma parameters !

Thank you for your attention!

