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Overview

• Introduction to plasma-assisted CO2 conversion

• Inverse problems in plasma physics:

– Electron swarm analysis

– Power deposition in CO2 microwave discharges

• Summary and conclusions
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What are you breathing right now?

[https://sciencenotes.org/chemical-composition-air/] 
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The modern fuels and chemicals industry

• Methanol

• Ethanol

• Hydrogen

• Hydrocarbons

• Ammonia

[T. Jaramillo, ESW New Energy Carriers and Fuels, oral presentation, Stanford (2023)]
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Cheap electrons are coming…

[Lazard‘s Levelized Cost of Energy Analysis, U.S. Energy Information Administration (2021)]
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Need new technologies to recycle CO2

Can we leverage renewable electricity and H2 to 

regenerate liquid fuels from CO2?

[E. Dundar-Tekkaya, Y. Yurum, Int. J. Hydrogen Energy 41, 9789-9795 (2016)]

[O. Guaitella, OLTP Seminar, 2021]
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Scientific feasibility

Renewable electricity is used to dissociate CO2
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Technological feasibility

Distributed, sustainable, chemical production
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Economical feasibility

Microwave discharges seem to offer high(est) energy efficiency. However…

[A. Bogaerts and G. Centi, Front. Energy Res. 8, 111 (2020)]
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From applied research… to basic research

We cannot design what we don’t understand!

Microwave setup @ 2.45 GHz 

(up to 1000 W input MW power)

• Lack of fundamental data

• Complex chemistry 

• Complex gas flow dynamics
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The challenge of inverse problems

• Lack of fundamental data

• Goal: to unfold fundamental data from measurements and models 

ill-posed problem
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The challenge of inverse problems

• Lack of fundamental data

• Goal: to unfold fundamental data from measurements and models 

L. Vialetto et al., PSST 30, 

075001 (2021)

L. Vialetto et al., PSST 31, 

055005 (2022)
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A look at a swarm experiment

[Donko et al., Plasma Sources Sci.Technol. 28, 095007 (2019) ]
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Swarm analysis

[S. Dujko, Plasma Seminar, Eindhoven (the Netherlands), 2021]

An iterative procedure is employed to derived electron-impact cross sections:
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(Popular) methods for solutions of the 

electron Boltzmann equation

Direct numerical solutions Monte Carlo simulations

- Two-term approximation 

- Multi-term approximation

[G.J.M. Hagelaar and L.C. Pitchford, 

PSST 14, 722-733 (2005)] 

[J. Stephens, J. Phys. D: Appl. Phys. 

51, 125203 (2018)] [S. Longo, PSST 15, S181-S188 (2006)] 
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The problem of electron transport in CO

• Large discrepancy between numerical results and experiments

• Are cross sections for electrons in CO accurate?
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The problem of electron transport in CO

• Large discrepancy between numerical results and experiments

• Are cross sections for electrons in CO accurate?

[P. Ogloblina et al., PSST 29, 015002 (2020)]
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Anisotropic treatment of rotational collisions

• At low energy, rotational (dipole) collisions are not isotropic

• Different assumptions for the angular scattering distributions are used

Angular 

scattering 

distribution
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Influence of anisotropic scattering on electron drift 

Large discrepancies between the models and experiments are found 

when changing the angular scattering model

[L. Vialetto et al., PSST 30, 075001 (2021)]
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Implementation in a two-term Boltzmann solver

• Anisotropic scattering can be included in two-term Boltzmann solver 

by modification of the “effective” cross section:

• The anisotropic scattering term have been implemented also in the 

open-source code LoKI-B [1,2]

Isotropic term Anisotropic

elastic inelastic

{ 1 }

[1] L. Vialetto et al., PSST 30, 075001 (2021)

[2] A. Tejero-del-Caz et al., PSST 28, 043001 (2019)
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Results using a two-term Boltzmann solver (LoKI-B)
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Take home messages (1)

• Remember to check validity of cross sections set with 

(measured) electron transport parameters!

• Besides CO, anisotropic scattering of electrons plays an 

important role also for NO [1], H2O [2,3], NH3
[4]

• Anisotropic scattering in multi-term Boltzmann solver has 

now been implemented [5]

[1] V. Laporta, L. Vialetto, V. Guerra, PSST 31, 054001 (2022)

[2] M. Budde, T.C. Dias, L. Vialetto, et al., J. Phys. D: Appl. Phys. 55, 445205 (2022)

[3] M. Budde, T.C. Dias, L. Vialetto, et al., J. Phys. D: Appl. Phys. 56, 255201 (2023)

[4] R. Snoeckx, J. Tennyson, M. Suk Cha, PSST 32, 115020 (2023)

[5] M. Flynn, L. Vialetto, A. Fierro, A. Neuber, J. Stephens, submitted
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CO2 microwave plasma contraction

Diffuse regime

(100 mbar)

Contracted regime

(250 mbar)

[F.A. D’Isa et al., PSST 29, 105009 (2020)]

Understanding plasma contraction is important for maximization of CO2 conversion
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Modeling CO2 microwave plasmas

A multi-physics model is required for accurate modeling

Major challenge: how to model diffuse and contracted plasma?
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Two-temperature plasma model

A 1-D radial fluid model has been developed for diffuse and contracted plasmas

[L. Vialetto et al., PSST 31, 055005 (2022)]

INPUT: deposited power density, electron-impact cross sections, heavy species rate coefficients
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The Monte Carlo Flux method

[G. Schaefer and P. Hui, J. Comput. Phys. 89, 1-30 (1990)]

[L. Vialetto, S. Longo, P. Diomede, PSST 28, 115015 (2019)]
[L. Vialetto, P. Viegas, S. Longo, P. Diomede, PSST 29, 115006 (2020)]
[L. Vialetto, H. Sugawara, S. Longo, in preparation]

Excellent agreement with 

multi-term solutions

Electrons in CO2 gas
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Gas temperature in diffuse and contracted regimes

Diffuse (100 mbar) Contracted (250 mbar)

[L. Vialetto et al., PSST 31, 055005 (2022)]
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Neutral species radial profile

CO2 dissociation driven by high gas temperature in the core

Diffuse Contracted

[L. Vialetto et al., PSST 31, 055005 (2022)]

100 mbar 250 mbar
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Charged species radial profile

Diffuse Contracted

[L. Vialetto et al., PSST 31, 055005 (2022)]

Broad ne profile, O2
+ dominant ion Narrow ne profile, O2

+ dissociated in core
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Net electron loss rates

Diffuse Contracted

[L. Vialetto et al., PSST 31, 055005 (2022)]

Dissociative attachment of electrons Electron-ion recombination
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Take home messages (2)

As pressure increases: 

• Tgas increases in the core from 3000 K to 6000 K

• Change in neutral species composition:

– Favors associative ionization over electron impact ionization

• Change in charged species composition: 

– From molecular (O2
+) to atomic ions (O+)

– Reduced electron transport with increasing pressure
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Conclusions

• Inverse problems are often encountered in plasma physics and chemistry

• Currently, the solution of those problems is based on physical intuition

• New (unbiased) approaches are required for estimation of fundamental 
data or internal plasma parameters !

Thank you for your attention!
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