

Electron emission and backscattering from surfaces⁺

Franz Xaver Bronold

Institute of Physics University Greifswald

OLTP seminar, 3. October 2023

+ Funded by DFG under contract 495729137

Outline

2. Calculational approach

3. Numerical results

4. Conclusion

Motivation

Secondary electron emission – Why should we care?

man-made plasmas are bounded by confining solid walls

dusty plasmas

fusion plasmas

microdischarges

A. Melzer

Schorn, FZ Juelich

Kulsreshath, PSST (2014)

- plasma interacts with solids
- ion-, radical-, and electron-solid interaction $\rightarrow \alpha, Y_e^*, (S_e, R_e, Y_e \rightarrow S, R, Y)$
- electron impact energies depend on plasma context
- focus of presentation: very low electron impact energies (< 50 eV)

Solid-state-based microdischarges

J. Tang et al., AIP Adv. 6, 045016 (2016)

location 1-4 along electrode

See also, J. Choi et al., IEEE Trans. Plasma Science 35, 1274 (2007)

Figure 1. Schematic of a single silicon based MHCD reactor produced by MEMS manufacturing technology.

S. Iseni et al., PSST. 28, 065003 (2019)

- V_s typically a few 100 eV
- plenty of e^- interacting with solid boundaries at $E < 50 \,\mathrm{eV}$
- need R_e, S_e, and Y_e for very low impact energies and variety of materials

Very low electron impact energies - challenge

Energy range of interest

From P. Tolias, PPCF 56, 123002 (2014).

- $E_0 < 50 \,\mathrm{eV} \Rightarrow$ true secondaries and inelastically scattered primaries not clearly separable
- solid state effects matter (surface potential, electronic structure)
- established empirical formulae for $\delta(E_0) [\rightarrow Y(E_0)]$ not applicable

 \Rightarrow *Y*, *R*, and *S* have to be calculated and measured

Measuring secondary electron emission yields - beam experiments

- sophisticated electron spectroscopy and vacuum equipment
- angle and energy resolved measurements
- control over surface quality (single crystals)
- but: not applicable to plasma environment

Focus on "clean" (well characterized) samples! L. A. Gonzalez et al., AIP Advances 7, 115203 (2017)

M. S. Hammond et al., PRB 45, 6131 (1992)

Measuring electron sticking coefficients - electric probe experiments

V. I. Demidov, S. F. Adams, I. D. Kaganovich, M. E. Koepke, I. P. Kurlyandskaya, Phys. Plasma 22, 104501 (2015)

1 & 2=clean & dirty Mo; 3=dirty Mo (Bronshtein), 4=Cu (Cimino)

FIG. 3. Schematic of the experimental device. A glass tube has a diameter of 35 mm and length of 30 cm with cold cathode (C) and anode (A). A probe tip (PT) is situated along the tube axis, and probe holder (PH) is perpendicular to the tube axis.

- Ne afterglow plasma, heavy particle collisions generate e⁻ beam with E_k Ne^{*} + e⁻ → Ne + e⁻(E_k)
- probe current modified by electron reflection $I_d(V) = I_c(V)G(eV)$

$$G(U) = 2 \int_0^{\pi/2} d\theta \sin \theta \cos \theta \, S_e(E - U, \theta)$$

- possibility to extract $S_e = 1 Y_e$
- interesting operando method, but how well characterized are surfaces?

Calculational approach

Before we get started

Connection to plasma modeling

- \rightarrow electron-solid interaction encapsulated in BC
- ightarrow two fundamentally different approaches to do that

- input: $Y_e = Y_{el} + Y_{inelastic} + Y_{ts}$, dY_e/dE
- output: *P_n* ⇔ prob. for event in particle-based simulation

- **input:** microphysics of interface (elementary excitations, $E(\vec{k})$, ...)
- output: Y_e , $dY_e/dE \Rightarrow$ surface scattering kernel=BC for e^- BE $f_e^> = R_e \circ f_e^<$

[1] M. A. Furman and M. T. F. Pivi, Phys. Rev. Spec. Topics - Accelerator and Beams, 5, 124404 (2002)

Stages of development of our (physical) approach

- initially, we applied our approach to dielectrics with $\chi > 0$ [1]
 - \rightarrow conditional probability construction to obtain B from Q
 - \rightarrow step potential, scattering on optical phonons and surface defects
 - $\rightarrow E < E_g \Rightarrow$ no impact ionization
 - \rightarrow linearized embedding equation for $Q \Rightarrow$ algebraic recursion relations
- then, we generalized our approach substantially and applied it to metals [2]
 - \rightarrow still conditional probability construction for B
 - \rightarrow image step with Bragg scattering, energy gaps at surface
 - \rightarrow ei, ep, ee, and scattering on surface defects
 - ightarrow no linearization of embedding equation but quasi-isotropic approximation
 - \Rightarrow set of linear integral equations instead of algebraic equations
- now, we applied it to semiconductors with $\chi > 0$ [3]
 - \rightarrow conditional probability construction for B abandoned
 - \rightarrow image step, ei, ep, and impact ionization (hence, $E > E_g$ now allowed)
 - \rightarrow no linearization and no quasi-isotropic approximation
 - \Rightarrow full embedding equation for $Q \Rightarrow$ Ricatti and a set of Sylvester equations

[1] FXB and H. Fehske, PRL **115**, 225001 (2015); ibid. PPCF **59**, 014011 (2017); [2] ibid. JAP **131**, 113302 (2022); [3] FXB and F. Willert, arXiv:2309.00534 and submitted (2023).

Calculational approach – cartoon E ŧΕ E=0 Eξ ¥E' CB ż χ incoming electron E'ξ E-Eg $D(E\xi)$ scattering cascades B VB D $B(E\eta | E'\eta')$ θ Evb outgoing electron solid solid solid

Notation: scattering from $(E, \eta) \rightarrow (E', \eta')$

model for semiconductor

So far: chemically clean surfaces;

surface chemistry due to plasma could be buried in D

Emission yield for structurally perfect surface

$$Y(E,\xi) = \int_0^E dE' \int_0^1 d\xi' R(E,\xi|E',\xi')$$

$$\underbrace{R(E,\xi|E',\xi')}_{=R(E,\xi)\delta(E-E')\delta(\xi-\xi') + \Delta R(E,\xi|E',\xi')}_{=R(E,\xi)\delta(E-E')\delta(\xi-\xi') + \Delta R(E,\xi|E',\xi')}$$

electron surface scattering kernel

Calculational approach – electron surface scattering kernel

Electron-solid interaction

- qm transmission through interface potential electron mass mismatch V(z) across interface energy gaps
- scattering cascades inside solid elastic & inelastic processes electron multiplication band structure

$$F^{>}(E',\xi') = \int_{0}^{\infty} dE \int_{0}^{1} d\xi F^{<}(E,\xi) R(E,\xi|E',\xi')$$

$$R(E,\xi|E',\xi') = R(E,\xi)\delta(E-E')\delta(\xi-\xi') + \Delta R(E,\xi|E',\xi')$$

$$\Delta R(E,\xi|E',\xi') = \frac{E'}{E'+\chi} \frac{\xi'}{\eta'} \rho(E')\Theta(E-E')D(E,\xi)B(E,\eta(\xi)|E',\eta(\xi'))D(E',\xi')$$

Calculational approach – alternative expression for Y [1]

Emission yield $Y(E,\xi)$ for an electron hitting perfect (C = 0) or irregular ($C \neq 0$) surface with (E,ξ)

- irregular surface $\rightarrow \int_0^1 d\xi'(...)$
- qm transmission through surface potential $\rightarrow D(E,\xi) = 1 R(E,\xi)$
- internal scattering cascade $\rightarrow B(E\eta|E'\eta') \rightarrow$ invariant embedding principle

$$\begin{split} Y(E,\xi) &= 1 - S(E,\xi) \\ S(E,\xi) &= \frac{D(E,\xi)}{1 + C/\xi} \left[1 - \mathcal{E}(E,\xi) \right] + \frac{C/\xi}{1 + C/\xi} \int_0^1 d\xi' D(E,\xi') \left[1 - \mathcal{E}(E,\xi') \right] \\ \mathcal{E}(E,\xi) &= \int_{\eta_{\min}(E)}^1 d\eta' \int_{E_{\min}(\eta')}^E dE' \rho(E') B(E\eta(\xi) | E'\eta') \overline{D}(E',\xi(\eta')) \\ \overline{D}(E,\xi) &= \frac{D(E,\xi)}{1 + C/\xi} + \frac{C/\xi}{1 + C/\xi} \int_0^1 d\xi' D(E,\xi') \ , \ C \sim |M|^2 n_{\text{surface defects}} \end{split}$$

Limiting cases: $C \rightarrow 0$ (perfect) and $C \rightarrow \infty$ (very irregular)

[1] FXB and H. Fehske, PRL 115, 225001 (2022); ibid. PPCF 59, 014011 (2017)

Calculational approach – capabilities/options

overall

irregular surface ⇔ (elastic) surface defects

surface transmission function \boldsymbol{D}

image step plus Bragg gap (two band model)

bulk transition rates W^{\pm}

- (statically screened) el-el scattering \rightarrow two final states
- (quasi-elastic) electron-phonon scattering
- incoherent elastic scattering by ion cores
 - \rightarrow pseudo-potentials for ion cores

invariant embedding equations for $Q \Rightarrow B$

- decoupling of *E* and η ⇔ quasi-isotropic approximation (QIA) [1]
- now: numerical solution without QIA [2]

• $\hat{=} G^+$ or G^- with $G^{\pm} = W^{\pm}/\eta v$

[1] FXB and H. Fehske, JAP 131, 113302 (2022); [2] FXB and F. Willert, arXiv:2309.00534 and submitted (2023).

Calculational approach – invariant embedding principle

Dashen (1964): Adding an infinitesimally thin layer of the same material to a thick surface should not alter $Q(E\eta|E'\eta')$.

R. Dashen, Phys. Rev. 134, A1025 (1964)

$$dQ = \left\{ G^{-} + G^{+} \circ Q + Q \circ G^{+} + Q \circ G^{-} \circ Q - \left(\frac{\Pi}{\eta} + \frac{\Pi'}{\eta'}\right)Q \right\} dz = 0$$
$$(A \circ B)(E\eta|E'\eta') = \int_{E'}^{E} dE'' \int_{0}^{1} d\eta'' \rho(E'')A(E\eta|E''\eta'')B(E''\eta''|E'\eta')$$

Calculational approach – kernels

Scattering rates and the like – Golden Rule $(E, \eta) \rightarrow (E', \eta')$

$$\begin{aligned} G^{\pm}(E\eta|E'\eta') &= \frac{W^{\pm}(E\eta|E'\eta')}{v(E)\eta} & \Pi(E) &= \frac{\Gamma(E)}{v(E)} \\ W^{\pm}(E\eta|E'\eta') &= \int_{0}^{2\pi} d\phi \, W(E\eta|E'\eta';\phi) \\ \Gamma(E) &= \int_{-\chi}^{E} dE'' \int_{0}^{1} d\eta'' \rho(E'') [W^{+}(E\eta|E''\eta'') + W^{-}(E\eta|E''\eta'')] \\ W^{\pm}(E\eta|E'\eta') &= W^{\pm}_{\rm el}(E\eta|E'\eta') + W^{\pm}_{\rm ee}(E\eta|E'\eta') \end{aligned}$$

Embedding equation for $Q(E\eta|E'\eta')$ to be solved

$$S \circ Q + Q \circ S = G^{-} + G^{+} \circ Q + Q \circ G^{+} + Q \circ G^{-} \circ Q$$
$$S(E, \eta | E', \eta') = \frac{\Pi(E)}{\eta} \delta(E - E') \delta(\eta - \eta')$$

Calculational approach - randium jellium model for ion cores [1]

- incoherent scattering on randomly distributed ion cores
- quasi-elastic electron-phonon scattering
- impact ionization across bulk energy gap

E

$$\begin{split} W_{\rm elastic}^{\pm}(E,\eta|E',\eta') &= W_{\rm ep}^{\pm}(E,\eta|E',\eta') + W_{\rm eic}^{\pm}(E,\eta|E',\eta') \\ W_{\rm ep}^{\pm}(E,\eta|E',\eta') &= \frac{M^2}{(2\pi)^2} [1 + 2n_B(\omega_{\rm LO})] \delta(E-E') \Theta(E_{\rm th}-E) \\ W_{\rm eic}^{\pm}(E,\eta|E',\eta') &= \frac{1}{(2\pi)^2 n_{\rm ion}} \langle |U_{\rm Ps}(g^{\pm})|^2 \rangle_{\Phi} \delta(E-E') \Theta(E-E_{\rm th}) \\ W_{\rm impact}^{\pm}(E,\eta|E',\eta') &= \mathcal{W}(E,T,1|E',T',\pm1) \quad \text{Monte Carlo integration required} \\ \end{split}$$
[1] For details see, FXB and F. Willert, arXiv:2309.00534 and submitted (2023).

Calculational approach – numerics

Adopting Shimizu and Mizuta's approach of solving embedding-type equations in nuclear transport theory. A. Shimizu and H. Mizuta, J. Nucl. Sci. Technol. **3**, 57 (1966)

(i) Discretization of energy space

$$A_{nm}(\eta|\eta') = \int_{n} dE \int_{m} dE' A(E,\eta|E',\eta') f_{n}(E) \ , \ f_{n}(E) = 1/\Delta E_{n}$$

 \Rightarrow Ricatti/Sylvester equations for $Q_{nm}(\eta|\eta')$

$$S_n * Q_{nn} + Q_{nn} * S_n = G_{nn}^- + Q_{nn} * G_{nn}^- * Q_{nn} + G_{nn}^+ * Q_{nn} + Q_{nn} * G_{nn}^+$$

$$S_n * Q_{nm} + Q_{nm} * S_m = K_{nm}^-$$

(ii) Realizing Volterra-type structure of energy integrals

 \Rightarrow sampling energy space such that $Q_{kr}(\eta|\eta')$ inside K_{nm}^{-} known from previous step

$$K_{nm}^{-} = \dots + C_{nm}^{-} + \dots$$
$$C_{nm}^{-} = \sum_{l=m+1}^{n-1} \sum_{p=m}^{l} Q_{nl} * G_{lp}^{-} * Q_{pm}$$

Numerical results

Results – metals (Cu, Ag, Au)

- quasi-isotropic approximation (not discussed in this talk)
 FXB and H. Fehske, JAP 131, 113302 (2022)
- cond. prob. construction $B = B(E\eta|E'\eta')$ $= \frac{(2Q_{ee} + Q_{ei})(E\eta|E'\eta')}{\int_{-\chi}^{E} d\bar{E} \int_{0}^{1} d\bar{\eta}\rho Q(E\eta|\bar{E}\bar{\eta})}$
- successful also for W and Al
- for Cu (100) nearly perfect agreement between theory and experiment

A. Bellissimo, PhD thesis, Universitá degli Studi Roma Tre (2019), https://doi.org/10.5281/zenodo.3924096

• for $E > 2 \,\mathrm{eV}$ Gonzalez data for Cu, Ag, and Au [2] fairly well reproduced

L. A. Gonzalez et al., AIP Advances 7, 115203 (2017)

Despite quantitative success, cond. prob. construction problematic.

Wrong limit for vanishing interface potential; Flaw of construction perhaps compensated by QIA?; Under investigation.

E. G. McRae and C. W. Caldwell, Surf. Science 57, 77 (1976)

Results – semiconductors (Si, Ge) – $Y(E, \xi = 1)$

- no cond. probability construction: $B(E\eta|E'\eta') = Q(E\eta|E'\eta')$
- semi-empirical description of solid (band structure, scattering, screening)
 - ightarrow parabolic VB and CB with $m^*_{
 m CV}=m^*_{
 m VB}=m_e$
 - \rightarrow adhoc ep/eic when $\lambda_{\rm dB} \sim a_{\rm L}$, that is, at $E_{\rm th} = -\chi + (2\pi/a_{\rm L})^2 \sim 0$ eV

 $E < E_{th}$: impact+ep; $E > E_{th}$: impact+eic

- \rightarrow screening of ee, eic, and ep (bond vs. atomic like VB charge)
- experimental data reasonably well reproduced; need more measurements!
 → no tunable parameters!

Results – semiconductors (Si) – $W^{\pm}(E\eta|E'\eta')$ – angle dependence

 $W^-: E = 28.8 \,\mathrm{eV}, E' = 28.8, 1.8 \,\mathrm{eV}$ $W^+: E = 28.8 \,\mathrm{eV}, E' = 28.8, 1.8 \,\mathrm{eV}$

OLTP seminar 2023 Franz X. Bronold (Uni Greifswald) : Electron emission and backscattering

Results – semiconductors (Si) – $W^{\pm}(E\eta|E'\eta')$ – energy dependence $W^{-}: \eta = 1, \eta' = 0.75, 0.24$ $W^{+}: \eta = 1, \eta' = 0.75, 0.24$

OLTP seminar 2023 Franz X. Bronold (Uni Greifswald) : Electron emission and backscattering

Results – semiconductors (Si) – $R(E, \xi | E', \xi')$

• primary e^- : $\xi = 1$ and $E = 28.8 \,\mathrm{eV}$

IΕξ D(E と)

• $R(E,\xi|E',\xi')$ can be obtained for any E and ξ ⇒ BC for BE which takes solid's electron microphysics into account

 $F^{>}(E',\xi') = \int_0^\infty dE \int_0^1 d\xi F^{<}(E,\xi) R(E,\xi|E',\xi')$

Conclusion

• embedding approach for $Q(E, \eta | E', \eta')$ used to calculate surface scattering kernel [1] and not only emission yield [2]

[1] FXB and F. Willert, arXiv:2309.00534 and submitted (2023); [2] FXB and H. Fehske, JAP 131, 113302 (2022); ibid. PPCF 59, 014011 (2017); ibid. PRL 115, 225001 (2015).

- embedding equation for Q solved without approximation
 - \rightarrow transport problem for $Q(E\eta|E'\eta')$ under control
 - ightarrow focus now on semi-empirical description of solid
 - ightarrow operando diagnostics of plasma-exposed surfaces required

Operando surface diagnostics – How and why?

Only few experimental data for Y at $E < 20 \text{ eV} \Rightarrow$ measurements required!

- free-standing, well-characterized surfaces would be good
- plasma-exposed surfaces better

- electronic structure of plasma-exposed surface (photoelectron spectroscopy) potential barriers $\rightarrow U_0$, energy gaps $\rightarrow 2V_G$
- chemical and structural composition (Auger spectroscopy)
- measuring electron reflection and emission yields would be really great!