

Reducing turbulent transport in tokamaks by combining intrinsic rotation and the low momentum diffusivity regime

Haomin Sun1* , J. Ball¹,S. Brunner¹, A. Field², B. Patel², A. Balestri¹, D. Kennedy², C. Roach², E. Viezzer³, M. Munoz³, D. Zabala³ ¹Swiss Plasma Center, EPFL ²CCFE, Culham Science Centre, Abingdon, Oxon, UK ³University of Seville, Seville, Spain Presentation to Theory Department, PPPL 31 October 2024

École polytechnique fédérale de Lausanne

EPFL Outline

Introduction to turbulence stabilization by flow shear

Finding Low Momentum Diffusivity (LMD) regime using circular geometry

Combining up-down asymmetry and the LMD regime to stabilize turbulence

Studies of a MAST equilibrium from shot #24600

Simulations of preliminary SMART geometry

 $\overline{2}$

Introduction to turbulence stabilization by flow shear

Haomin Sun & GENE group, PPPL seminar

Haomin Sun & GENE group, PPPL semina

4

Experiments and simulations have shown that flow shear can stabilize turbulence, improving tokamak performance

5 Haomin Sun & GENE group, PPPL seminar Haomin Sun & GENE group, PPPL semina

EPFL Generating flow shear using neutral beam/radio frequency waves

[Liu et al., Nuclear Fusion, 2004]

Flow shear is usually generated from external momentum sources such as NBI or RF waves.

External injections do not scale well to large devices: <u>Πinj</u> Q_{inj} $\sim \frac{1}{v} \sim \frac{1}{\sqrt{Q_{inj}}}$

ITER: $\omega_1 \sim 0.02 v_4/R_0$

Alternatives?

EPFL Generate flow shear using up-down asymmetry

Typical expression for momentum flux (Taylor expansion of flow and flow shear)

In steady state $\Pi_i = 0$, so assuming pinch term is small, **we have**

$$
\Pi_{i, int} = \frac{\sum_{i}^{m} \frac{d\Omega_i}{dr} n_i m_i R_0^2}{2r}
$$
\n
$$
Q_i = -D_{Q_i} \frac{dT_i}{dr}
$$
\nDefine Prandtl number: $Pr_i = \frac{D_{\Pi_i}}{D_{Q_i}}$

\nPrandtl number estimates the rotation relative to turbulence amplitude

Many people assumed $Pr_i \approx 1$

To lowest order in gyrokinetics, $\Pi_{i,int} = 0$ unless magnetic equilibrium is up-down asymmetric

[Ball et al., Nuclear Fusion, 2018] [Parra et al., POP, 2011]

number is required

Often simplified calculation of toroidal angular momentum flux

**Finding low momentum
diffusivity regime using
circular geometry [1,2] Finding low momentum

diffusivity regime using

circular geometry [1,2]

[1] Haomin Sun, Justin Ball, Stephan

Brunner et al.,2024,

https://doi.org/10.48550/arXiv.2410.10555

[2] Haomin Sun, Justin Ball, Stephan

Brunner**

[1] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, <https://doi.org/10.48550/arXiv.2410.10555>

[2] Haomin Sun, Justin Ball, Stephan Brunner et al., 2024,
https://doi.org/10.48550/arXiv. 2408.12331

EPFL

EPFL Low Momentum Diffusivity (LMD) manifold

576 nonlinear GENE simulations with adiabatic electrons.

9

It is important to consider $\Pi_{i,\text{tor}}^{\perp}$ in Prandtl number calculation at tight aspect ratio

 $\Pi_{i,\text{tor}}^{\perp}$ becomes important especially in the LMD regime

 \blacksquare

10

Low Momentum Diffusivity (LMD) regime
tight aspect ratio, low q , normal to high \widehat{s}

Contours of Pr_i for circular geometry, $\epsilon = 0.36$

11

A more comprehensive study inspired by previous work

[McMillan & Dominski, Journal of Plasma Physics, 2019]

Effects of other parameters (ϵ , kinetic electrons, TEM turbulence)?

EPFL Tight aspect ratio reduces Prandtl number

Tight aspect ratio and high magnetic shear reduce Prandtl number

Kinetic electrons increase Prandtl number, but do not affect basic trend

EPFL

With kinetic electrons, simulations are further away from marginal stability

EPFL TEM turbulence does not change the Prandtl number significantly

ETG does not contribute to momentum flux because $m_e \ll m_i$

 \blacksquare

14

Combining up-down asymmetry and LMD regime to stabilize turbulence [1,2]

[1] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, <https://doi.org/10.48550/arXiv.2410.10555>

[2] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, <https://doi.org/10.48550/arXiv.2408.12331>

EPFL

E PFL Using quasilinear (QL) model to estimate flow shear at equilibrium \mathbf{r}^{th}

QL model: [Sun et al., NF, 2024]

Scan flow shear to find the ω_1 value at which $\widehat{\Pi}_i = 0$

Using our QL model to predict the steady-state flow shear, which shows good agreements

EPFL LMD regime with up-down asymmetry drives strong flow shear

17

EPFL Effect of pinch term on intrinsic rotation
 $\Pi_i = \Pi_{i,int} - n_i m_i R_0^2 D_{\Pi_i} \frac{d\Omega_i}{dx} - n_i m_i R_0^2 P_{\Pi_i} \Omega_i = 0$

erefore have
 $\Pi_{i,int} = n_i m_i R_0^2 D_{\Pi_i} \frac{d\Omega_i}{dx} + n_i m_i R_0^2 P_{\Pi_i} \Omega_i$

$$
\Pi_i = \Pi_{i,int} - n_i m_i R_0^2 D_{\Pi_i} \frac{d\Omega_i}{dx} - n_i m_i R_0^2 P_{\Pi_i} \Omega_i = 0
$$

We therefore have

$$
\Pi_{i,int} = n_i m_i R_0^2 D_{\Pi_i} \frac{d\Omega_i}{dx} + n_i m_i R_0^2 P_{\Pi_i} \Omega_i
$$

Important to note that both D_{Π_i} and P_{Π_i} are positive [Peeters et al., PRL, 2007]

$$
\Omega_{i}(x) = -e^{\int_{x}^{a} \frac{P_{\Pi i}}{D_{\Pi i}} dx'} \int_{x}^{a} \frac{\Pi_{i, int}}{n_{i} m_{i} R_{0}^{2} D_{\Pi i}} e^{-\int_{x'}^{a} \frac{P_{\Pi i}}{D_{\Pi i}} dx'} dx'' + \Omega_{edge} e^{\int_{x}^{a} \frac{P_{\Pi i}}{D_{\Pi i}} dx'} \text{ Higgs its sign}
$$
\n
$$
\frac{d\Omega_{i}}{dx}(x) = \frac{P_{\Pi i}}{D_{\Pi i}} e^{\int_{x}^{a} \frac{P_{\Pi i}}{D_{\Pi i}} dx'} \int_{x}^{a} \frac{\Pi_{i, int}}{n_{i} m_{i} R_{0}^{2} D_{\Pi i}} e^{-\int_{x'}^{a} \frac{P_{\Pi i}}{D_{\Pi i}} dx'} dx'' + \frac{\prod_{i, int;}{\Pi_{i, int;}}}{n_{i} m_{i} R_{0}^{2} D_{\Pi i}} - \Omega_{edge} e^{\int_{x}^{a} \frac{P_{\Pi i}}{D_{\Pi i}} dx'}
$$

Considering pinch term will only make the intrinsic rotation stronger

EPFL

Test if MAST #24600 is in the LMD regime [1,2]

[1] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, <https://doi.org/10.48550/arXiv.2410.10555>

[2] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, <https://doi.org/10.48550/arXiv.2408.12331>

$EPIL$ Simulate MAST $#24600$ at $t=0.28$ s

Chose #24600 at t=0.28s as it has a large radial range with low q , and is in a quasi-steady state, nearly free of MHD instabilities

EPFL Benchmark with experiment using measured flow shear at $\psi_n=0.5$

 \blacksquare

EPFL Prandtl number comparison and the state of the s

[Peeters et al., 2007, PRL]

 $\Pi_i = \chi_{\Pi} u' + V_{pinch} u$

$$
TRANSP calculates
$$

$$
\chi_{\Pi,eff} = \chi_{\Pi,real} \left(1 + \frac{RV_{pinch}}{\chi_{\Pi,real}} \frac{1}{R/L_u} \right)
$$

Linearly estimated pinch term using a given $k_v \rho_i = 0.3$, and then corrected the experimental Prandtl number

A low Prandtl number can be obtained on MAST.

Tilt the MAST geometry

EPFL Artificially tilt MAST geometry to study intrinsic flow shear 24

 \blacksquare

EPFL Predicting flow shear generated by up-down asymmetry 25

EPFL

At least 1/3 of the experimental rotation can be generated

For larger devices, red curves are lower but blue dots are expected to remain the same

SMART preliminary geometry simulation [1,2]

[1] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, <https://doi.org/10.48550/arXiv.2410.10555>

[2] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, <https://doi.org/10.48550/arXiv.2408.12331>

27

EPFL

 $\kappa \approx 1.39$

$$
\theta_{\kappa} \approx 0.51 = 29^o
$$

At
$$
\rho_{tor} = 0.7
$$
, we have $\epsilon = 0.393$, $q = 1.33$, $\hat{s} = 1.25$ (LMD regime)

Use miller general geometry for GENE simulations

EPFL Summary of SMART simulations \sim 29

Flow shear created: SMART: $0.16c_s/a$ MAST (hypothetical): $0.26c_s/a$ TCV: $0.03c_s/a$

 \blacksquare

https://arxiv.org/abs/2408.12331 https://arxiv.org/abs/2410.10555

- Outlined a new approach to drive strong flow shear in large spherical tokamaks
- **Prandtl number can be much smaller than 1, termed the Low** Momentum Diffusivity (LMD) regime
	- Enabled by tight aspect ratio, low q , high \hat{s} , and low $\frac{R_0}{L_T}$ L_T
- Combining the LMD regime with up-down asymmetry creates intrinsic flow shear that significantly reduces the heat flux
- Simulations of MAST and SMART show they can exhibit LMD
- **Hypothetical tilted MAST showed flow shear stabilization**
- Studied a tilted geometry that may be achievable on SMART, which also demonstrated flow shear stabilization

Useful for STEP design?

Full expression of EM toroidal angular momentum flux **EPFL**

$$
\Pi_{\varsigma} = -\left\langle \left\langle \left| \int d^{3}v \, f_{\varsigma} m_{\varsigma} R\left(\vec{v} \cdot \hat{e}_{\xi}\right) (\vec{v} \cdot \nabla \psi) \right\rangle \right\rangle \right\rangle_{\Delta t}
$$
\n
$$
\Pi_{\varsigma s} = \frac{4\pi^{2}i}{V'} \left\langle \sum_{k_{\psi},k_{\alpha}} k_{\alpha} \oint d\theta J B \int dw_{||} d\mu \, h_{s} \left(-k_{\psi}, -k_{\alpha} \right) \right\rangle_{\Delta t}
$$
\n
$$
\times \left\{ \phi \left(k_{\psi},k_{\alpha} \right) \left[\left(\frac{I}{B} w_{||} + R^{2} \Omega_{\zeta} \right) J_{0} \left(k_{\perp} \rho_{s} \right) + \frac{i}{\Omega_{s}} \frac{k^{\psi}}{B} \frac{\mu B}{m_{s}} \frac{2J_{1} \left(k_{\perp} \rho_{s} \right)}{k_{\perp} \rho_{s}} \right] - A_{||} \left(k_{\psi},k_{\alpha} \right) \left[\left(\frac{I}{B} w_{||} + R^{2} \Omega_{\zeta} \right) w_{||} J_{0} \left(k_{\perp} \rho_{s} \right) + \left(i \frac{w_{||}}{\Omega_{s}} \frac{k^{\psi}}{B} + \frac{I}{B} \right) \frac{\mu B}{m_{s}} \frac{2J_{1} \left(k_{\perp} \rho_{s} \right)}{k_{\perp} \rho_{s}} \right] + B_{||} \left(k_{\psi},k_{\alpha} \right) \frac{1}{\Omega_{s}} \left[\left(\frac{I}{B} w_{||} + R^{2} \Omega_{\zeta} \right) \frac{\mu B}{m_{s}} \frac{2J_{1} \left(k_{\perp} \rho_{s} \right)}{k_{\perp} \rho_{s}} + \frac{i}{2\Omega_{s}} \frac{k^{\psi}}{B} \frac{\mu^{2} B^{2}}{m_{s}^{2}} G \left(k_{\perp} \rho_{s} \right) \right] \right\}
$$
\n
$$
\Pi_{\zeta B} = \frac{2\pi i}{\mu_{0} V'} \left\langle k_{\psi},k_{\alpha} \right\rangle \left\{ \left| \left(-k_{\psi}, -k_{\alpha
$$

 $h_s = H_s - \frac{Z_s e F_M}{T_s}$ $\frac{\partial F_{\mu\nu}}{\partial T_s}(\phi - \langle \phi \rangle_{\varphi}) + \mu$ F_M $\frac{m_S}{T_S} \langle B_{||} \rangle_{\varphi}$ Pull back operation H_s : distribution in guiding center coordinate

 \blacksquare

Note: Not really self-consistently written, because the φ dependence of h_s and other parts must be integrated together

[Parra et al., 2011; Ball PhD thesis 2016; Sugama & Horton 1998]

Haomin Sun

Haomin Sur

EPFL $\psi_n = 0.5$ Nonlinear Simulations, realistic geometry, no flow shear

