

Reducing turbulent transport in tokamaks by combining intrinsic rotation and the low momentum diffusivity regime

Haomin Sun^{1*}, J. Ball¹,S. Brunner¹, A. Field², B. Patel², A. Balestri¹, D. Kennedy², C. Roach², E. Viezzer³, M. Munoz³, D. Zabala³ ¹Swiss Plasma Center, EPFL ²CCFE, Culham Science Centre, Abingdon, Oxon, UK ³University of Seville, Seville, Spain Presentation to Theory Department, PPPL 31 October 2024

EPFL Outline

Introduction to turbulence stabilization by flow shear

• Finding Low Momentum Diffusivity (LMD) regime using circular geometry

Combining up-down asymmetry and the LMD regime to stabilize turbulence

Studies of a MAST equilibrium from shot #24600

Simulations of preliminary SMART geometry

Introduction to turbulence stabilization by flow shear

Haomin Sun & GENE group, PPPL semina

Experiments and simulations have shown that flow shear can stabilize turbulence, improving tokamak performance

4aomin Sun & GENE group, PPPL seminar 🧯

Generating flow shear using neutral beam/radio frequency waves

[Liu et al., Nuclear Fusion, 2004]

Flow shear is usually generated from external momentum sources such as NBI or RF waves.

External injections do not scale well to large devices: $\frac{\prod_{inj}}{Q_{inj}} \sim \frac{1}{v} \sim \frac{1}{\sqrt{Q_{inj}}}$

ITER: $\omega_{\perp} \sim 0.02 v_A/R_0$

Alternatives?

Generate flow shear using up-down asymmetry EPFL

Typical expression for momentum flux (Taylor expansion of flow and flow shear)

In steady state $\Pi_i = 0$, so assuming pinch term is small, we have

$$\Pi_{i,int} = D_{\Pi_{i}} \frac{d\Omega_{i}}{dr} n_{i} m_{i} R_{0}^{2}$$

$$Q_{i} = -D_{Q_{i}} \frac{dT_{i}}{dr}$$
Define Prandtl number: $\mathbf{Pr}_{i} = \frac{D_{\Pi_{i}}}{D_{Q_{i}}}$
Prandtl number estimates the rotation relative to turbulence amplitude

Many people assumed $\mathbf{Pr}_i \approx 1$

re

To lowest order in gyrokinetics, $\Pi_{i.int} = 0$ unless magnetic equilibrium is up-down asymmetric

[Parra et al., POP, 2011] [Ball et al., Nuclear Fusion, 2018]

number is required

Often simplified calculation of toroidal angular momentum flux

Finding low momentum diffusivity regime using circular geometry [1,2]

[1] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, https://doi.org/10.48550/arXiv.2410.10555

[2] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, https://doi.org/10.48550/arXiv.2408.12331

EPFL

Low Momentum Diffusivity (LMD) manifold

576 nonlinear GENE simulations with adiabatic electrons.

9

EPFL It is important to consider $\Pi_{i,tor}^{\perp}$ in Prandtl number calculation at tight aspect ratio

 $\Pi_{i,tor}^{\perp}$ becomes important especially in the LMD regime

10

Low Momentum Diffusivity (LMD) regime tight aspect ratio, low q, normal to high \hat{s}

Contours of Pr_i for circular geometry, $\epsilon = 0.36$

A more comprehensive study inspired by previous work

11

Haomin Sun & GENE group, PPPL seminar

[McMillan & Dominski, Journal of Plasma Physics, 2019]

Effects of other parameters (ϵ , kinetic electrons, TEM turbulence)?

EPFL Tight aspect ratio reduces Prandtl number

Tight aspect ratio and high magnetic shear reduce Prandtl number

Kinetic electrons increase Prandtl number, but do not affect basic trend

EPFL

With kinetic electrons, simulations are further away from marginal stability

TEM turbulence does not change the Prandtl number significantly

un & GENE group, PPPL seminar

14

Combining up-down asymmetry and LMD regime to stabilize turbulence [1,2]

[1] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, https://doi.org/10.48550/arXiv.2410.10555

[2] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, https://doi.org/10.48550/arXiv.2408.12331

EPFL Using quasilinear (QL) model to estimate flow shear at equilibrium

QL model: [Sun et al., NF, 2024]

Scan flow shear to find the ω_{\perp} value at which $\widehat{\Pi}_i = 0$

Using our QL model to predict the steady-state flow shear, which shows good agreements

LMD regime with up-down asymmetry drives strong flow shear

Effect of pinch term on intrinsic rotation

$$\Pi_i = \Pi_{i,int} - n_i m_i R_0^2 D_{\Pi_i} \frac{d\Omega_i}{dx} - n_i m_i R_0^2 P_{\Pi_i} \Omega_i = 0$$

We therefore have

$$\Pi_{i,int} = n_i m_i R_0^2 D_{\Pi_i} \frac{d\Omega_i}{dx} + n_i m_i R_0^2 P_{\Pi_i} \Omega_i$$

Important to note that both D_{Π_i} and P_{Π_i} are positive [Peeters et al., PRL, 2007]

$$\Omega_{i}(x) = -e^{\int_{x}^{a} \frac{P_{\Pi i}}{D_{\Pi i}} dx'} \int_{x}^{a} \frac{\Pi_{i,int}}{n_{i}m_{i}R_{0}^{2}D_{\Pi i}} e^{-\int_{x''}^{a} \frac{P_{\Pi i}}{D_{\Pi i}} dx'} dx'' + \Omega_{edge} e^{\int_{x}^{a} \frac{P_{\Pi i}}{D_{\Pi i}} dx'}$$
Flip up-down symmetry changes its sign changes

Considering pinch term will only make the intrinsic rotation stronger

EPFL

Test if MAST #24600 is in the LMD regime [1,2]

[1] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, https://doi.org/10.48550/arXiv.2410.10555

[2] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, https://doi.org/10.48550/arXiv.2408.12331

EPFL Simulate MAST #24600 at t=0.28s

Chose #24600 at t=0.28s as it has a large radial range with low q, and is in a quasi-steady state, nearly free of MHD instabilities

EPFL Benchmark with experiment using measured flow shear at $\psi_n=0.5$

EPFL Prandtl number comparison

[Peeters et al., 2007, PRL]

 $\Pi_i = \chi_{\Pi} u' + V_{pinch} u$

Linearly estimated pinch term using a given $k_y \rho_i = 0.3$, and then corrected the experimental Prandtl number

A low Prandtl number can be obtained on MAST.

EPFL

Tilt the MAST geometry

EPFL Artificially tilt MAST geometry to study intrinsic flow shear

24

Predicting flow shear generated by up-down asymmetry

Reconstruct rotation profile

At least 1/3 of the experimental rotation can be generated

For larger devices, red curves are lower but blue dots are expected to remain the same

SMART preliminary geometry simulation [1,2]

[1] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, https://doi.org/10.48550/arXiv.2410.10555

[2] Haomin Sun, Justin Ball, Stephan Brunner et al.,2024, https://doi.org/10.48550/arXiv.2408.12331

EPFL Parameters

 $\kappa \approx 1.39$

$$\theta_{\kappa} \approx 0.51 = 29^{\circ}$$

At
$$\rho_{tor} = 0.7$$
, we have $\epsilon = 0.393$, $q = 1.33$, $\hat{s} = 1.25$ (LMD regime)

Use miller general geometry for GENE simulations

EPFL Summary of SMART simulations

Flow shear created: SMART: $0.16c_s/a$ MAST (hypothetical): $0.26c_s/a$ TCV: $0.03c_s/a$

https://arxiv.org/abs/2408.12331 https://arxiv.org/abs/2410.10555

- Outlined a new approach to drive strong flow shear in large spherical tokamaks
- Prandtl number can be much smaller than 1, termed the Low Momentum Diffusivity (LMD) regime
 - Enabled by tight aspect ratio, low q, high \hat{s} , and low $\frac{R_0}{L_{T_i}}$
- Combining the LMD regime with up-down asymmetry creates intrinsic flow shear that significantly reduces the heat flux
- Simulations of MAST and SMART show they can exhibit LMD
- Hypothetical tilted MAST showed flow shear stabilization
- Studied a tilted geometry that may be achievable on SMART, which also demonstrated flow shear stabilization

Useful for STEP design?

EPFL Full expression of EM toroidal angular momentum flux

$$\begin{split} \Pi_{S} &= -\left(\left| \left| \left| \int d^{3}v \, f_{S}m_{S}R\left(\vec{v}\cdot\hat{e}_{\xi}\right)\left(\vec{v}\cdot\nabla\psi\right)\right|_{\psi}\right|_{\Delta\psi}\right|_{\Delta t} \right. \\ \Pi_{\zeta s} &= \frac{4\pi^{2}i}{V'} \left\langle \sum_{k_{\psi},k_{\alpha}} k_{\alpha} \oint d\theta JB \int dw_{||}d\mu \, h_{s}\left(-k_{\psi},-k_{\alpha}\right) \right. \\ &\times \left\{ \phi\left(k_{\psi},k_{\alpha}\right) \left[\left(\frac{I}{B}w_{||}+R^{2}\Omega_{\zeta}\right) J_{0}\left(k_{\perp}\rho_{s}\right) + \frac{i}{\Omega_{s}}\frac{k^{\psi}}{B}\frac{\mu B}{m_{s}}\frac{2J_{1}\left(k_{\perp}\rho_{s}\right)}{k_{\perp}\rho_{s}} \right] \right. \\ &- A_{||}\left(k_{\psi},k_{\alpha}\right) \left[\left(\frac{I}{B}w_{||}+R^{2}\Omega_{\zeta}\right) w_{||}J_{0}\left(k_{\perp}\rho_{s}\right) + \left(\frac{i}{\Omega_{s}}\frac{k^{\psi}}{B} + \frac{I}{B}\right)\frac{\mu B}{m_{s}}\frac{2J_{1}\left(k_{\perp}\rho_{s}\right)}{k_{\perp}\rho_{s}} \right] \\ &+ B_{||}\left(k_{\psi},k_{\alpha}\right)\frac{1}{\Omega_{s}} \left[\left(\frac{I}{B}w_{||}+R^{2}\Omega_{\zeta}\right)\frac{\mu B}{m_{s}}\frac{2J_{1}\left(k_{\perp}\rho_{s}\right)}{k_{\perp}\rho_{s}} + \frac{i}{2\Omega_{s}}\frac{k^{\psi}}{B}\frac{\mu^{2}B^{2}}{m_{s}^{2}}G\left(k_{\perp}\rho_{s}\right) \right] \right\} \\ &\left. \Pi_{\zeta B} &= \frac{2\pi i}{\mu_{0}V'} \left\langle \sum_{k_{\psi},k_{\alpha}} k_{\alpha} \oint d\theta JA_{||}\left(k_{\psi},k_{\alpha}\right) \right. \\ &\times \left[-ik^{\psi}A_{||}\left(-k_{\psi},-k_{\alpha}\right) + IB_{||}\left(-k_{\psi},-k_{\alpha}\right) \right] \right\rangle_{\Delta t} \end{split}$$

 $h_{s} = H_{s} - \frac{Z_{s} e F_{Ms}}{T_{s}} \left(\bar{\phi} - \left\langle \bar{\phi} \right\rangle_{\varphi} \right) + \mu \frac{F_{Ms}}{T_{s}} \left\langle \bar{B}_{||} \right\rangle_{\varphi} \quad \text{Pull back operation}$ $H_{s}: \text{ distribution in guiding center coordinate}$

Note: Not really self-consistently written, because the φ dependence of h_s and other parts must be integrated together

[Parra et al., 2011; Ball PhD thesis 2016; Sugama & Horton 1998]

EPFL $\psi_n = 0.5$ Nonlinear Simulations, realistic geometry, no flow shear

