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= Coulomb collisions: Fokker-Planck and Langevin approaches



Coulomb collisions: the Fokker-Planck approach

= Collisional processes in fully ionized, weakly coupled plasmas are governed by cumulative
small-angle Coulomb scattering. The collision between plasma species @ and 8 can be
described by the Landau-Fokker-Planck (LFP) equation:
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Here, we have used:
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= The LFP equation conserves particle number, momentum, and energy of the system.
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Coulomb collisions: the Langevin approach

Coulomb collisions can also be described by the Langevin equation that focuses on the random
movement of each particle:
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where 1’ (t) is the random force on i-th particle, VD is a matrix decomposition satisfying VDVD' = D.

Mathematically, the Langevin equation is known as a stochastic differential equation (SDE) and is
typically written in the following form of 1t6 SDE:

AV = s (vO)dE + |/ Dag(veri) AW

where W (t) ~ N (0,I5t) are independent 3-D Wiener processes.

= Although statistically equivalent to the LFP equation, the SDE for Coulomb collisions does not
conserve energy and momentum of the system with finite number of particles. This is a major
disadvantage of the Langevin approach describing Coulomb collisions.

= |n this work, we derive new SDEs for Coulomb collisions that naturally hold the conservation laws.

New algorithms are also developed to hold the exact conservation laws in discrete time. e
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Intuition of conservation laws in SDE

» Consider the simplest system described by SDEs, the Brownian motion.
* The energy and momentum of the small particle is clearly not conserved.

* |t is perfectly fine because the energy and momentum are absorbed by the
background media, which we are not interested.

Particle

Background media

= In the Coulomb collisions in plasmas, the situation is different.

* The particle being considered is usually denoted as “test particle”, and all

other particles are denoted as the “field particles!. ®
o
* The energy and momentum of the test particle is not conserved due to its Test particle\. P
interaction with field particles. °®
* However, the energy and momentum absorbed into field particles can not “ o %o
be ignored, because every particle is both test and field particles. ® ° L J

* Therefore, the energy and momentum transfer between test and field

_ _ _ Field particles
particles has to be considered to order to hold the conservation law.

[1] R. Cohen, L. Spitzer, and P. Routly., Phy.s Rev., 1950. 3/ 17



Interaction between test and field particles

= Unfortunately, the energy and momentum transfer between test and field
particles are difficult to analyze because test particle interacts with the
collective effect of field particles.

N
= Consider intra-species collision between N particles, f(v,t) = w Z S[v — v'(t)].
Let u*’ = v' — v’, the SDE for each particle is written as: i=1 S
/’./ °* .
dv' = % .Z'b(uij)dt—i— 7;;—12; .Z'a(u"'j)dwi, i=1,...,N. ,’/ o © \\\
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* The deterministic force represents the interaction between each

. : . L FieIJ articles
individual particles and satisfies Newton's third law. P

* The stochastic force, however, represents the collective effect from field
particle to the test particle.

* In fact, the stochastic force on each particle has no correlation because
of the independency of the Wiener processes Wi and W.

* This is the origin of the breakdown of conservation laws. 4717



Restoring conservation laws

» As we understand the reason why conservation laws break down, we seek to

modify the SDEs to achieve two objectives: //. .
1. The total energy and momentum of the system are conserved exactly; / e &
- : : : : ® e -
2. The statistics of particles should not change, i.e., the first and second . % «®e ! Test particle
moments, (Av) and (AvAv), should give the same LFP equation; N . e, n

~ -

- - -

Field particles
» We achieve the two objectives above through the following constructs:

1. Factorize the collective interaction between test and field particles into
direct, individual interactions between each particle;

2. Add correlation to the stochastic force between each particle pair, so
that Newton's third law is satisfied.

.\ ~
.\ - - - h >~ ~
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= With Newton's third law, one may expect that only momentum s o T

conserved. However, as to be shown soon, energy is also conserved with the $;_—:::t:{—};;;;f;/?f//”

i /,*.’//‘/:/:///:/:// .
construction above. o * % Test particle
(S

Field particles
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Construction 1: Factorizing the collective interaction

» Consider three independent 3-D Gaussian random variables, X1, X5, X3 ~ N (0,13),
and two positive semi-definite 3x3 matrices, M; and M,. Define two random variables:

Y1 = VM Xy + VMo Xo, Yo =/ M+ My Xs.

= We observe that Y1 ~ Yo ~ N (0, M1 + Mo>):

(YY) =/ Mi\/M XlXT )+ \/ Mo/ M XQXT + cross terms = M + My =

» Therefore, Y, can be regarded as a factorization of Y,. Since Wiener processes are
also Gaussian, we can factorize the stochastic force as:

D auid)dWi = Y (/a(uid)dW,

J, JF1 J, JF1

where Wi and W are independent Wiener processes. In addition, v/a(u) can also be
readily calculated:
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Construction 2: Add correlation between interactions

= After factorizing the stochastic force, the SDE now reads:

N N
i Z wL, VwL ij ij Z ij
dV = . Wb(uj)dt—i— m 0'(1,1‘7)(1‘R7‘7 ~ . FJ.
Jj=1 71=1
J#i J#i

= Notice that b(—u) = b(u), o(—u) = o(u), the force between particles satisfies

Newton's third law, F¥ = —F7* if we impose the following correlation[23!:
P g

WY (t) = —WI'(t).

= Similarly, we can derive the SDEs for collision between species a and p:
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where u”? = v’ — v#J so u”? # —u’’.

[2] J. Fontbona, et al., Probab. Theory Relat. Fields, 2009. [3] K. Carrapatoso, Kinet. Relat. Models, 2016.
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Demonstration of exact conservation laws

*= The energy and momentum of the system are:
{Oé,ﬁ} N {O‘,B} N

E = Z Z%wms|vs’i2, P = Z Zwmsvs’i.
s 1=1

S =1
The momentum conservation, dP = 0, is a direct result of Newton's third law,
but the energy conservation is not straightforward.

= Consider a given 1-D process X(t) and a smooth function of it f(X).

* In deterministic case, dX = pdt, the chain rule reads:
df(X) = f'dX = puf’ dt.
* However, in stochastic case, dX = pudt + o dW, the chain rule becomes:

df(X) = f'dX + % £t = (u f % f”) dt + o f'dW. (Itd's lemma)

= After carry out a long algebra using It6's lemma, we can provel* the energy
conservation dE = 0.

[4] Y. Fu, J. R. Angus, H. Qin, V. I. Geyko, arXiv:2410.12079. 8/ 17



A few more mathematics: from Itd to Stratonovich

= All the SDEs discussed previously were understood as the Ité6 SDE. They can be understood as 1t6
stochastic integral, is defined in “forward Euler” type:
t N—1
dX; = o( X, t)dW, = X,—Xg= / o(Xy,t') AWy = lim > (X, ) (We,,, — Wa,)

i .

t
The benefit of It6 integral is that it is a martingale: (X;) — Xo = </ o( Xy, t") th/> = 0.
0

= Another widely-used definition is the Stratonovich SDE, which is defined in “midpoint” type:

t N—1
dX; = U(Xtv t) odW; = Xy —Xo= / O(Xt’7t,) odWyp = ]\;gn O-(Xti+1/27ti+1/2)(Wti+l - Wti)'
0 =1

It has the advantage of following the usual chain rule: df(X;) = f/(X;) o dX;.

= 1-D Ité6 and Stratonovich SDEs can be transformed as
1
o(X)odW = ia(X)a’(X) dt 4+ o(X) dW,

whose difference is a nonlinear deterministic term. .



Stratonovich SDE for Coulomb collisions

= After (another) long algebra, we can derive the Stratonovich SDEs for intra- and inter-species
collision. Surprisingly, the deterministic terms vanish completely in Stratonovich SDEs.

» For intra-species collision between N particles, the Stratonovich SDE is:

dv? =

g
ME

QLS.

n
<. =

o(u?)odW", WY =_W',

= For inter-species collision between N, and Nj particles in two species, the SDEs are:

dvet = Y %7 whas

Me

Ng N

y g . /WL o5 = g y
E o(u?) o dWY, dvPi = _VWhap E o(u) o dWY,
: mg -
j:]_ =1

* The conservation laws can be easily proved using those Stratonovich SDE with regular chain rules.

= When one species is infinitely heavy, the SDEs return to the case of pitch-angle scatteringl®6l.

[5] X. Zhang, Y. Fu, and H. Qin, Phys. Rev. E, 2020.

[6] Y. Fu, X. Zhang, and H. Qin, J. Comput. Phys., 2022
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Numerical algorithms for Coulomb collisions

* In 6-D full-f particle-based simulations, algorithms for nonlinear LFP collision operators
typically fall into the following two categories:

* Binary collision algorithmsl”10  which mimic the Coulomb scattering process
between binary pairs;

« SDE-based algorithmsli1-14] which explore the correspondence between LFP
equation and SDEs.

= Other algorithms includes:

 Particle-field methodsl*®, which map particles to grid, calculate collisions, and map
grid back to particle;

* Deterministic particle method[16-18] that transform LFP equation into ODEs;

* Here, we develop a numerical algorithms for our new SDEs in order to (i) verify that our
SDE gives the correct collision physics; (ii) serve as a new method to calculate nonlinear
LFP equation.

[7] T. Takizuka, and H. Abe., J. Comput. Phys., 1977. [11] W. M. Manheimer, et al., J. Comput. Phys., 1997. [15] E. S. Yoon, C. S. Chang. Phys. Plasmas, 2014.
[8] W. X. Wang, et al., J. Comput. Phys., 1996. [12] M. G. Cadjan, M. F. Ivanov. J. Plasma Phys., 1999. [16] J. A. Carrillo, et al., J. Comput. Phys. X, 2020.
[9] K. Nanbu, Phys. Rev. E, 1997. [13] F. L. Hinton, Phys. Plasmas, 2008. [17] E. Hirvijioki, Plasma Phys. Control. Fusion, 2021.

[10] A. V. Bobylev, I. F. Potapenko, J. Comput. Phys., 2013. [14] D. S. Lemons, et al., J. Comput. Phys., 2009. [18] F. Zonta, et al, Phys. Plasmas, 2022. 11 / 17



Exact conservative algorithm for SDE: construction

» To construct an algorithm that holds conservation laws numerically, we notice that:

1 T
o(u) o dW = —— (1 —£> o dW = (ﬂ) X .

Vul [u?| [uf5/2

» Therefore, we can construct an algorithm for the Stratonovich SDE as

At)T =271 —— At)T =276
A .. AT =272 —— At/T =277
: u >< W : > y 429 — At)T=23  —— AyT =2
1 _ k 1) 1) Jv » »
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Here, ukH/2 = (u¥ u; o+ u 7Y/2, and uk = vi — V‘]i The key feature of the algorithm is () [« s

Inter-species

that it is a mixture of epr|C|t and midpoint methods. | e
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= Furthermore, we can analytically prove that this algorithm converges to the SDE with a

: . . ~1 . 3
strong order of 1/2, i.e., the strong error comparing to exact solution vy, is: sl

102 10! 100

N
Z|V};—{’2 ~OWAt) for k=1,2,...,N;. At/T
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Exact conservative algorithm for SDE: properties

* The numerical method has the following properties:

; i VL (uf x AW
Vier mVE= =) wipe ) Uy AWY = AW~ N(0, I;AL).
7j=1 k

J#i

Though implicit, RHS only depends on v}, ; only linearly. So v}, are explicitly solvable.

The algorithm preserves momentum exactly due to the anti-symmetry AWY = —AW/¢

N
me(viﬂ —vy) =0.
i=1

The algorithm preserves energy exactly:

N 1 N
> gmuw(Vigl® = Vil?) = > mw(vigs = vi) - Vigaye = 0.
i=1 i=1

Therefore, the algorithm holds all conservation laws of SDE in discrete time.
13 / 17



Benchmark in two relaxation processes

We benchmark our algorithm in two relaxation processes:

= Temperature isotropization along different directions in one species.

d1', 1 (1CZW| B
S RS0
dt 2@~ T =10
Let A="T /T — 1 > 0, the isotropization time Tiso isl!%l:
‘nln A
e SRR A2[(A+3)tan” (VA)/VA - 3],

7_‘_3/26 \/— 3/2

= Temperature relaxation between two isotropic species.

The relaxation time 7,4 is?9:
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[19] S. Ichimaru, and M. N.. Rosenbluth. Phys. Fluids, 1970.

[20] J. Wesson and D. J. Campbell, 7okamaks, 2011.
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Complexity reduction

In our algorithm, every particle interact with each other, so the computational
complexity is at least O(N2). To reduce the complexity, we use a particle grouping

technique as follows:

1. In each step, divide all particles randomly into N, groups with N/ N, particles
in each group;

2. Modify the weight of each particle as w,=N, w;

3. Calculate the collision only among the same group.

Consider the inter-species collision with same number of particles in each species.
In the limit of each group having one particle in both species, our method returns
to pair-collision algorithms. Let 6 be the scattering angle of each particle and
define § = tan(#/2), we can prove that:

(6%) eie%n In Aup

At 8regmz|uy |?

+ O(VAY),

which is the same as the Takizuka-Abe method!”l up to the lowest order.

[7] T. Takizuka, and H. Abe., J. Comput. Phys., 1977.
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Conclusion and main takeaway

= Properties of Gaussian random variables allow us to factorize collective forces between field and test
particles into individual forces between particle pairs, which might be useful in deriving SDEs for

different processes.
> aid)dWi = Y /a(ud)dWY.

J, J#1 J, JF1

= Upon enforcing Newton's third law on the stochastic force, we can describe the Coulomb collision as
an exactly energy-momentum-conserving stochastic process. Its Stratonovich SDE has a particular
simple form: a pure diffusion process without drag.

/— N
vi= )odW¥, W4 = W7,
m

‘ M

oS
Sl
S

= A numerical algorithm has been constructed for the SDEs that hold conservation laws exactly in
discrete time. It is also benchmarked in relaxation processes against analytical solutions.

Vi1 — Vi :—Z< k u)’|5/2 >X kj+1/2v AWY = —AW" ~ N(0,13At).

J#i
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Discussion

= In the current study, the SDEs are derived from LFP equations. However, we
can also derive the SDE from microscopic description and then derive the LFP

based on the SDE.

= Although the SDEs hold conservation laws exactly, it does not work for
unequally weighted particles because the variances of the force are not equal.

= Same difficulty exists in binary collision algorithms, whose conservation laws can
only be addressed with predictor-corrector type of methodsl1421],

* On the other hand, Coulomb collisions in gyrokinetics can also be described by
the FP equationl?223], Corresponding SDEs may be derived in a similar manner.

[14] D. S. Lemons, et al.,, J. Comput. Phys., 2009. [21] J. R. Angus, Y. Fu, V. |. Geyko, D. Grote, D. Larson, arXiv:2407.19151
[22] A. J. Brizard, Phys. Plasmas, 2004. [23] E. Hirvijoki, et al., Phys. Plasmas, 2013
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