Parity-Broken Fluids: Theory and Applications

Dylan Reynolds *City College of New York, CUNY*

Oct. 5th, 2023

Princeton Plasma Physics Lab

Outline

- Motivation
- Hydrodynamics
- Odd (gyro) viscosity
- Ferrofluids
- Hele-Shaw Cell
- Microscopic Origins
- Superfluids

<u>Goal:</u> Parity-breaking (odd viscosity) is common to many systems and leads to a general type of observable phenomena

Our Research Group

Sriram Ganeshan (CCNY, CUNY)

Gustavo Monteiro (CSI, CUNY)

Also: Sudheesh Srivastava, Chunyin Chan, Zeshui Song

Research Interests:

- Hydrodynamics of parity broken flows
- Active matter and odd viscosity
- Boundary dynamics of fractional quantum Hall fluids
- Kuramoto oscillators and machine learning

Nonlinear shallow water dynamics with odd viscosity Gustavo M. Monteiro and Sriram Ganeshan Phys. Rev. Fluids 6 , L092401 – Published 7 September 2021	
 Hele-Shaw flow for parity odd three-dimensional fluids Dylan Reynolds, Gustavo M. Monteiro, and Sriram Ganeshan Phys. Rev. Fluids 7, 114201 – Published 16 November 2022 	
Kardar-Parisi-Zhang Universality at the Edge of Laughlin Sta Monteiro, G. M., Reynolds, D., Glorioso, P., & Ganeshan, S.	ates

preprint arXiv:2305.16511 May 2023

Parity Breaking "spinny particles"

Ubiquitous across all scales...

Some possible methods of study:

Odd ideal gasses – collisions of chiral particles,

kinetic theory [5]

Odd elasticity – stress/strains in chiral crystals [6]

Odd fluids - odd viscosity [7]

[1] Tan, Tzer Han & Mietke, Alexander & Higinbotham, Hugh & Li, Junang & Chen, Yuchao & Foster, Peter & Gokhale, Shreyas & Dunkel, Jörn & Fakhri, Nikta. (2021). Odd dynamics of living chiral crystals. 10.48550/arXiv.2105.07507.

[2] Soni, V., Bililign, E.S., Magkiriadou, S. *et al.* The odd free surface flows of a colloidal chiral fluid. *Nat. Phys.* 15, 1188–194 (2019).

[3] Wells, F., Pan, A., Wang, X. *et al.* Analysis of low-field isotropic vortex glass containing vortex groups in YBa²Cu³O⁷-*x* thin films visualized by scanning SQUID microscopy. *Sci Rep* **5**, 8677 (2015).

[4] Weng, H., Dai, X., & Fang, Z. (2015). From Anomalous Hall Effect to the Quantum Anomalous Hall Effect. *arXiv: Materials Science*.

[5] Fruchart, M., Han, M., Scheibner, C., & Vitelli, V. (2022). The odd ideal gas: Hall viscosity and thermal conductivity from non-Hermitian kinetic theory. *arXiv preprint arXiv:2202.02037*.
[6] Scheibner, C., Souslov, A., Banerjee, D. *et al.* Odd elasticity. *Nat. Phys.* 16, 475–480 (2020).
[7] Khain, T., Scheibner, C., Fruchart, M., & Vitelli, V. (2022). Stokes flows in three-dimensional fluids with odd and parity-violating viscosities. *Journal of Fluid Mechanics, 934*, A23

Parity Breaking in Plasmas

- If Larmor radius is smaller than plasma length scale \rightarrow Gyro Viscosity
- Split into two terms, perpendicular to *B*-field and parallel to *B*-field [8]

$$\eta_{\alpha\perp} = \frac{v_{\alpha}^2}{2\omega_{\alpha}} \qquad \eta_{\alpha\parallel} = \frac{v_{\alpha}^2}{\omega_{\alpha}} \qquad \qquad \omega_a = \frac{e_{\alpha}B}{m_{\alpha}}$$

• Contributes to gyro viscous stress in Braginskii Eq. (*B*-field along *z* direction)

$$\begin{split} \frac{1}{n_{\alpha}m_{\alpha}}(\boldsymbol{\nabla}\cdot\boldsymbol{\pi})_{\perp} &= -\left(\eta_{\alpha\perp}\boldsymbol{\nabla}_{\perp}^{2} + \eta_{\alpha\parallel}\frac{\partial^{2}}{\partial z^{2}}\right)\boldsymbol{v}_{\alpha}\times\boldsymbol{z} - \eta_{\alpha\parallel}(\boldsymbol{\nabla}\times\boldsymbol{z})\frac{\partial}{\partial z}v_{\alpha z}\\ \frac{1}{n_{\alpha}m_{\alpha}}(\boldsymbol{\nabla}\cdot\boldsymbol{\pi})_{z} &= -\eta_{\alpha\parallel}\frac{\partial}{\partial z}\boldsymbol{z}\cdot(\boldsymbol{\nabla}\times\boldsymbol{v}_{\alpha}), \end{split}$$

• Dissipationless, forces always perpendicular to flow and appears in real part of dispersion

[8] Kono, M., and J. Vranjes. "Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas." Physics of Plasmas 22.11 (2015).

Active matter

• Collection of agents that convert environment energy into directed mechanical motion

bacteria, cells, liquid crystals, Janus particles, active colloids, spinny particles...

- Fluid description \rightarrow properties of active matter captured by viscosity coefficients
- Studied extensively in 2D, less so in 3D
- Markovich & Lubensky 2021 [9]:
 - Coarse-grain collection of complex molecules
 - Introduce intrinsic angular momentum density $\vec{\ell}$
 - Gives parity-broken viscosity in both 2D and 3D

[9] Markovich, T., & Lubensky, T. C. (2021). Odd viscosity in active matter: microscopic origin and 3d effects. *Physical Review Letters*, *127*(4), 048001.

Possible microscopic descriptions

3D odd viscosity can arise from relaxation of $\vec{\ell}$:

$$\hat{g}_i(\mathbf{r}) = \sum_{\alpha\mu} p_i^{\alpha\mu} \delta\left(\mathbf{r} - \mathbf{r}^{\alpha\mu}\right)$$

which gives "coarse grained" momentum

$$\mathbf{g}(\mathbf{r}) = \mathbf{g}^c + \frac{1}{2} \boldsymbol{\nabla} \times \boldsymbol{\ell}$$

If $\vec{\ell}$ is relaxed, then momentum conservation gives:

$$\dot{g}_i + \nabla_j \left(v_j g_i \right) = -\nabla_i \tilde{P} + \eta \nabla^2 v_i + \frac{1}{2} \boldsymbol{\ell} \cdot \nabla \omega_i$$

with
$$\tilde{P} \equiv P + \boldsymbol{\ell} \cdot \boldsymbol{\omega}$$

[9] Markovich, T., & Lubensky, T. C. (2021). Odd viscosity in active matter: microscopic origin and 3d effects. *Physical Review Letters*, *127*(4), 048001.

Hydrodynamics

 $\frac{dQ}{dt} = 0$

 $\partial_t q + \partial_i \Pi_i^q = 0$

Study of global conserved quantities *Q*:

Gives rise to local conservation laws for density *q*:

Flux $\Pi_i^q(q, v_i, ...)$ given by constitutive relation

We focus on mass and momentum:

$$\partial_t \rho + \partial_i g_i = 0 \qquad g_i = \rho v_i$$
$$\partial_t g_i + \partial_j \Pi_{ij} = 0 \qquad \Pi_{ij} = \rho v_i v_j - T_{ij}$$

Ignore any thermal effects, so energy conservation comes automatically

$$Q = \int d\vec{r} q(\vec{r}) :$$

mass
momentum
energy
entropy
angular momentum
...

 $\rho = \text{mass density}$ $v_i = \text{flow velocity}$ $g_i = \text{momentum density}$ $\Pi_{ii} = \text{momentum flux}$

Hydrodynamics

Governing equations typically written:

$$\partial_t \rho + \partial_i (\rho v_i) = 0$$

$$\rho D_t v_i = \partial_j T_{ij} + f_i$$

with material derivative $D_t = \partial_t + v_j \partial_j$

In first order hydro T_{ij} is first order in gradients of velocity:

$$T_{ij} = -\delta_{ij}P + \eta_{ijkl}\partial_k v_l + \cdots$$

Viscosity tensor η_{ijkl} is in general a function of ρ and \vec{r}

Simplifications:
- If compressible:
- If incompressible:

$$P = P_0 + c^2(\rho - \rho_0) + \cdots$$

 $\partial_i v_i = 0$

Viscosity Tensor in 2D

- In 2D compressible fluid a general viscosity tensor η_{ijkl} has 16 independent components
- For isotropic 2D fluids symmetry leaves only 6 unique transport coefficients [10]

$=\eta\big(\delta_{ij}\delta$	$_{kl} + \delta_{il}\delta_{jk} - \delta_{ij}\delta_{jk}$	$\delta_{kl} + \zeta \delta_{ij} \delta_{kl}$	$_{l}+\Gamma\epsilon_{ij}\epsilon_{kl}+\eta$	$\theta_H (\epsilon_{ik} \delta_{jl} + \epsilon_{jl} \delta_{jl})$	$\left(\delta_{ik}\right) + \zeta_H \delta_{ij} \epsilon_{kl} - $	+ $\Gamma_{\rm H}\epsilon_{ij}\delta_{kl}$
	Shear	Bulk	Rotational	Odd/Hall	Odd pressure	Odd torque
In the in	compressible limit,	and no internal	l torque (<i>T_{ij}</i> sym	metric under $i \leftarrow$	→ j)	
	$\eta_{ijkl} = \eta($	$\left[\delta_{ij}\delta_{kl}+\delta_{il}\delta_{kl}\right]$	$\left(\delta_{jk} \right) + \eta_H \left(\epsilon_{ik} \delta_{jk} \right)$	$_{jl} + \epsilon_{jl}\delta_{ik} + \zeta$	$ \mathcal{L}_H \delta_{ij} \epsilon_{kl} \begin{vmatrix} \partial_i v_i \\ & T \end{vmatrix} $	$= 0, \qquad \delta_{kl} - \delta_{$

• To be written as a Hamiltonian system, only η_H remains (with constant ρ)

[10] Monteiro, G.M., Abanov, A.G., & Ganeshan, S. (2021). Hamiltonian structure of 2D fluid dynamics with broken parity. SciPost Physics.

Basic Results in 2D

Odd viscosity has no effect on incompressible bulk:

$$D_{t}v_{i} = -\partial_{i}P + \partial_{j}\sigma_{ij}, \qquad \sigma_{ij} = v_{e}(\partial_{i}v_{j} + \partial_{j}v_{i}) + v_{o}(\partial_{i}v_{j}^{*} + \partial_{i}^{*}v_{j})$$
$$D_{t}v_{i} = -\partial_{i}\tilde{P} + v_{e}\nabla^{2}v_{i}, \qquad \tilde{P} = P - v_{o}\omega$$

Thus, if boundary conditions depend only on flow:

- Flow does not depend on ν_o
- Net force on closed contour is independent of ν_o
- Net torque depends on change in area

$$\tau_o = 2\nu_o \frac{dA}{dt}$$

Odd viscosity does not produce any drag or lift forces in the incompressible case

[11] Ganeshan, Sriram, and Alexander G. Abanov. "Odd viscosity in two-dimensional incompressible fluids." Physical review fluids 2.9 (2017): 094101.

Results in 2D

- For a compressible ocean (free surface), effects of odd viscosity or confined to compressible boundary layer [12]
- In the nonlinear regime, odd viscosity modifies the KdV equation and soliton solutions [13]

$$\eta_x \pm \frac{\eta_t}{\sqrt{gh}} + \frac{3}{2h}\eta \,\eta_x + h^2 \left(\frac{1}{6} \pm \frac{\nu_o}{\sqrt{gh^3}}\right)\eta_{xxx} = 0$$

• If particle number conservation is violated, lift is possible [14]

$$\partial_t \rho + \partial_k (\rho v_k) = -\frac{1}{\kappa} (\rho - \rho_0)$$

• Current project: Odd compressible Oseen equation

$$\vec{v} = U_o \hat{x} + \epsilon \vec{u}$$

[12] Abanov, Alexander G., et al. "Hydrodynamics of two-dimensional compressible fluid with broken parity: variational principle and free surface dynamics in the absence of dissipation." *Physical Review Fluids* 5.10 (2020): 104802.
[13] Monteiro, Gustavo M., and Sriram Ganeshan. "Nonlinear shallow water dynamics with odd viscosity." *Physical Review Fluids* 6.9 (2021): L092401.

[14] Lier, Ruben, et al. "Lift force in odd compressible fluids." *Physical Review E* 108.2 (2023): L023101.

Viscosity Tensor in 3D

- In 3D, a general viscosity tensor η_{ijkl} has 81 independent components (compressible case)
- For rotational invariance in a single plane (xy), 19 independent coefficients [15]


```
\eta_1^o = 2D odd viscosity (transverse)
```

```
\eta_2^o = 3D odd viscosity (longitudinal)
```

- Importantly, there exist 2 'odd viscosity' coefficients
- Underlying microscopic theory determines the precise relation between coefficients

^[15] Khain, T., Scheibner, C., Fruchart, M., & Vitelli, V. (2022). Stokes flows in three-dimensional fluids with odd and parity-violating viscosities. *Journal of Fluid Mechanics*, 934, A23.

Results in 3D

• Bulk flow is modified (Stokeslet) [15]

- Novel "odd" mechanical waves are stable [9]
- Still active area of research; flows without "-2" constraint, and for non- isotropic not understood

[9] Markovich, T., & Lubensky, T. C. (2021). Odd viscosity in active matter: microscopic origin and 3d effects. *Physical Review Letters*, *127*(4), 048001.

[15] Khain, T., Scheibner, C., Fruchart, M., & Vitelli, V. (2022). Stokes flows in three-dimensional fluids with odd and parity-violating viscosities. *Journal of Fluid Mechanics*, *934*, A23.

3D Odd Viscosity in Plasmas

Role of gyro viscosity depends on relevant scaling (ordering) of the problem

 $\delta = \frac{R}{L} = \frac{\text{ion Larmor Radius}}{\text{length scale}}$

	L	
R		

- Hall MHD Ordering (large accelerations): gyro viscosity enters with pressure at 2nd order
- MHD Ordering (subsonic flows): gyro viscosity enters alone at 2nd order
- Drift Ordering: gyro viscosity enters at 2nd order WITH acceleration and viscosity

 $\chi = -p_i \mathbf{b} \cdot (\nabla \times \mathbf{V}_{\perp i})$

$$-\nabla p + \mathbf{J} \times \mathbf{B} = \delta^2 \left(n \frac{d\mathbf{V}_i}{dt} + \underline{\nabla \cdot \Pi_i^{gv}} + \mathbf{b} \cdot \nabla \cdot \Pi_i^{nc} - n \mu_A \nabla^2 \mathbf{V}_i \right)$$

gyroviscous cancellation:

$$n\left(\frac{\partial \mathbf{V}_{*i}}{\partial t} + \mathbf{V}_i \cdot \nabla \mathbf{V}_{*i}\right) + \underbrace{\nabla \cdot \prod_{i}^{gv}}_{i} (\mathbf{V}_i) \approx \nabla \chi - \mathbf{b} n \mathbf{V}_{*i} \cdot \nabla V_{\parallel i}$$

 $\mathbf{V}_e = \mathbf{V}_{\parallel e} + \mathbf{V}_E + \mathbf{V}_{\ast e}$

Magnetic Colloids to Ferrofluids

Magnetic colloids [17]:

- These relatively large ($\sim \mu m$) particles show odd viscosity experimentally
- For small particles like Ferrofluids ($\sim nm$) these effects 'washout'

Seem to possess all essential ingredients for parity breaking Is there a version of Ferrofluids that breaks parity?

[18]

[17] Soni, V., Bililign, E.S., Magkiriadou, S. *et al.* The odd free surface flows of a colloidal chiral fluid. *Nat. Phys.* 15, 1188–1194 (2019).
 [18] Cowley, M. D. "Ferrohydrodynamics. By R. E. ROSENSWEIG. Cambridge University Press, 1985. 344 Pp. £45." *Journal of Fluid Mechanics* 200 (1989): 597-99. Print.

Ferrofluids in a nutshell

Colloidal suspension with 3 components

- 5% Magnetized particles (magnetite, hematite, ~10 nm)
- 10% Surfactant (prevents clumping via Van der Waals)
- 85% Carrier fluid

Regular fluid if no external B field: Brownian Motion randomizes magnetic moments

Large scale magnetization in the presence of external *B* field

[19] Ghasemi, Jalal & Jafarmadar, Samad & Nazari, Meysam. (2015). Effect of magnetic nanoparticles on the lightning impulse breakdown voltage of transformer oil. Journal of Magnetism and Magnetic Materials. 389. 10.1016/j.jmmm.2015.04.045.

arXiv:2301.07096

[19]

Ferrohydrodynamics

Degrees of Freedom

	Fluid flow velocity:	$\vec{v} = (v_x, v_y, v_z)$
	Particle rotation rate:	$\overrightarrow{\Omega} = \left(\Omega_x, \Omega_y, \Omega_z\right)$
	Magnetization:	$\vec{M} = (M_x, M_y, M_z)$
	Pressure:	P = P(x, y, z)
Fixed Qu	uantities	
	Applied magnetic field:	$B = \left(B_x, B_y, B_z\right)$
	Density:	$\rho = const.$
	Moment of inertia per mass:	I = const. (small!)

arXiv:2301.07096

Main Idea

Recently:

• Markovich & Lubensky couple $\vec{\ell} = I\vec{\Omega}$ to $\vec{\omega} = \vec{\nabla} \times \vec{v}$

 \rightarrow leads to 3D odd viscosity in active matter systems [9]

- Relevant for magnetic colloids & large complex molecules
- Ferrofluid particles are too small; these effects don't manifest on hydrodynamic scale [17]

(i) Ω M $\vec{1}$ \vec{B}

Idea:

Couple magnetization \vec{M} *to* $\vec{\omega}$

[9] T. Markovich and T. C. Lubensky. Odd Viscosity in Active Matter: Microscopic Origin and 3D Effects. Physical Review Letters, 127, 048001 (2021).
[17] V. Soni, E. S. Bililign, S. Magkiriadou, S. Sacanna, D. Bartolo, M. J. Shelley, and W. T. Irvine. The odd free surface flows of a colloidal chiral fluid. Nature Physics, 15, 1188–1194 (2019).

arXiv:2301.07096

Note: Don't need Hamiltonian framework, but convenient for parity breaking (dissipationless)

arXiv:2301.07096

 \vec{B}

 $\vec{1}$

 $\vec{\omega}$

Governing Equations

Skip technical details...

Key Physical Steps:

- Fix uniform \vec{B} field in the *z* direction
- Small particle size (*I* goes to zero)

 \rightarrow particles rotate before magnetization re-adjusts

(contrast to larger magnetic colloids)

$$D_t v_i + \partial_i P = \nu \nabla^2 v_i + \frac{\gamma}{4} M^0 \partial_z \omega_i$$

arXiv:2301.07096

Unique to 3D flows! No term in standard ferrohydrodynamics

Ferrofluids in Hele-Shaw Cells

New coupling (Modified Darcy's Law):

$$0 = \partial_x V_x + \partial_y V_y$$
$$-\frac{h^2}{12} \partial_x P = \mu V_x - \frac{\gamma}{4} M^0 V_y$$
$$-\frac{h^2}{12} \partial_y P = \mu V_y + \frac{\gamma}{4} M^0 V_x$$

"Table-top" experiment to probe parity-odd fluid

[20] Elborai, S. & Kim, Do Kyung & He, Xiaowei & Lee, Se-Hee & Rhodes, S. & Zahn, Markus. (2005). Self-forming, quasi-twodimensional, magnetic-fluid patterns with applied in-plane-rotating and dc-axial magnetic fields. Journal of Applied Physics. 97. 10Q303-10Q303. 10.1063/1.1851453.

arXiv:2301.07096

[20]

Darcy's Law

Incompressible 3D fluid with shear viscosity:

$$\partial_{i}v_{i} = 0$$

$$\rho(\partial_{t}v_{i} + v_{j}\partial_{j}v_{i}) = \partial_{j}T_{ij} + f_{i}$$

$$T_{ij} = -P\delta_{ij} + \eta(\partial_{i}v_{j} + \partial_{j}v_{i}),$$

$$x$$

$$U \longrightarrow L$$

$$h$$

Z

Confine fluid between plates with separation *h*, assume *xy* variables vary over large scales compared to *h*:

$$V_i = -\frac{h^2}{12\eta} \partial_i P$$

$$v_x = 6z(1-z)V_x$$

$$v_y = 6z(1-z)V_y$$

$$v_z = 0$$

$$P = P(x, y)$$

Phys. Rev. Fluids 7, 114201 (2022)

Modified Darcy's Law

Incompressible 3D fluid with general (uniform) viscosity tensor:

Same scaling analysis. Remarkably, only four coefficients remain (out of 64 in principle):

$$V_i = -\frac{h^2}{12} (\mathfrak{y}^{-1})_{ij} \partial_j P \qquad \qquad \mathfrak{y} = \begin{pmatrix} \eta_{xzzx} & \eta_{xzzy} \\ \eta_{yzzx} & \eta_{yzzy} \end{pmatrix}$$

Phys. Rev. Fluids 7, 114201 (2022)

$$\frac{\text{Modified Darcy's Law}}{V_i = -\frac{h^2}{12} (\mathfrak{y}^{-1})_{ij} \partial_j P} \qquad \qquad \mathfrak{y} = \begin{pmatrix} \eta_{xzzx} & \eta_{xzzy} \\ \eta_{yzzx} & \eta_{yzzy} \end{pmatrix}$$

Analogous to:

- Flow through anisotropic porous media (symmetric unless parity is broken)
- Ohm's law with general conductivity (Hall Effect, $\vec{E} \sim \vec{\nabla}P$)

We examine special case of cylindrical symmetry $\eta = \eta_{xzzx} = \eta_{yzzy}$ (shear viscosity) $\eta_* = \eta_{xzzy} = -\eta_{yzzx}$ (3d odd viscosity)

Coefficient η_* is one of the 2 parity odd viscosities associated with 3D cylindrical symmetry

Longitudinal... Not 2D Hall viscosity!

Exp 1: Channel Flow

• Misalignment between flow and pressure gradient

$$\theta = \arctan\left(\frac{\eta_*}{\eta}\right)$$

• Transverse force on channel walls

$$F = 2\eta_* V_0(RLh)$$

• Hall Analogy:

Transverse electric field E_x is required to maintain vertical current

Exp 2: Expanding Bubble

- Laplacian Growth, well studied
- Polubarinova-Galin equation:

$$\left(\frac{\partial P}{\partial t} - \frac{\eta}{\eta^2 + \eta_*^2} |\vec{\nabla}P|^2\right)\Big|_{\partial\Omega(t)} = 0$$

- Modification to cusp formation time
- Circulation at infinity gives measure of parity odd-odd terms

$$\Gamma \sim \frac{\eta_*}{\eta^2 + \eta_*^2} \frac{d\mathcal{A}}{dt}$$

[21] Singularities in nonlocal interface dynamics, B. Shraiman and D. Bensimon, Phys. Rev. A 30, 2840(R) – Published 1 November 1984

Exp 3: Saffman/Taylor Instability

• Perform linear stability analysis on free surface of the form:

$$H(x,t) = \epsilon \operatorname{Re}\left(e^{ikx + \Omega t}\right)$$

- Interface boundary conditions
- Kinematic: V_n continuous & matched with interface
- Forces: *P* continuous
- Constraint on asymptotic flow angle

$$\theta = \arctan\left(\frac{\eta_*^{(2)} - \eta_*^{(1)}}{\eta^{(1)}}\right)$$

• Modified stability condition

$$(\rho^{(1)} - \rho^{(2)})g + V_0(\eta^{(1)} - \eta^{(2)}) + \frac{V_0(\eta^{(1)} - \eta^{(2)})^2}{\eta^{(1)} + \eta^{(2)}} < 0$$

• Parity-odd terms introduce more stable regions in the parameter space

Applications

Facilitates the measurement of parity-odd viscosity coefficients in active matter systems, especially useful for complex biological systems

[23]

[22] Circularly confined microswimmers exhibit multiple global patterns, Alan Cheng Hou Tsang and Eva Kanso, Phys. Rev. E 91, 043008 – Published 13 April 2015 [23] Active matter invasion of a viscous fluid: Unstable shoets and a no-flow theorem. Christopher 1. Miles. Arthur A. Evans

[23] Active matter invasion of a viscous fluid: Unstable sheets and a no-flow theorem, Christopher J. Miles, Arthur A. Evans, Michael J. Shelley, and Saverio E. Spagnolie, Phys. Rev. Lett. 122, 098002 – Published 4 March 2019

Experimental Setup

No coupling \rightarrow no circulation (yes or no result)

arXiv:2301.07096

Quantum Superfluids

- Fluid behavior of many-body quantum system
- Map complex wavefunction ψ to hydrodynamic variables
- Constraint on vorticity $\vec{\omega} = \vec{\nabla} \times \vec{v}$
- Vortex solutions \rightarrow density fluctuations important (compressible)

Typical Prescription:
$$\psi = \sqrt{2}$$
fluid-like equations: $\partial_t \rho + \frac{1}{2}$

$$\sqrt{\rho}e^{i\theta} \qquad \qquad v_i = \frac{\hbar}{m}\partial_i\theta$$
$$+ \partial_i(\rho v_i) = 0$$

0 $T_{ij} = -\delta_{ij}P + \eta_{ijkl}\partial_k v_l + \cdots$

$$\rho D_t v_i = \partial_j T_{ij} + f_i$$

"Quantum Pressure"
$$P = \frac{\hbar^2}{2m} \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}}$$

- Helium-4
- Superconductivity
- Ultra cold atomic gases
- Bose-Einstein condensates
- Fractional quantum Hall
- Polaritons

Fractional Quantum Hall Effect

- Collective behavior of 2D electron system in strong magnetic field
- Laughlin states admit fluid description

Start with Chern-Simons-Ginzburg-Landau action

$$S_{\text{CSGL}} = \int d^3x \left[i\hbar\Phi^{\dagger}D_t\Phi - \frac{\hbar^2}{2m} \left| D_i\Phi \right|^2 - V(|\Phi|^2) - \frac{\hbar\nu}{4\pi}\epsilon^{\mu\lambda\kappa}a_{\mu}\partial_{\lambda}a_{\kappa} \right]$$

where Φ is bosonic matter field, A_{μ} is external electromagnetic field, a_{μ} is statistical Chern-Simons field

Define velocity:

$$v_i = \frac{\hbar}{m} \left(\partial_i \theta + a_i + \frac{e}{\hbar} A_i + \frac{\epsilon_{ij}}{2n} \partial^j n \right)$$

arXiv:2305.16511

Fluid Equations

Charge and Momentum conservation:

$$\partial_t n + \partial_i (nv_i) = 0$$
$$\partial_t v_i + v_j \partial_j v_i + \frac{eB}{m} \epsilon_{ij} v_j - \frac{1}{mn} \partial_j T_{ij} = 0$$

$$n - \frac{\nu eB}{2\pi\hbar} + \frac{\nu}{4\pi}\partial_i\left(\frac{\partial_i n}{n}\right) + \frac{\nu m}{2\pi\hbar}\epsilon_{ij}\partial_i v_j = 0$$

Stress Tensor:

$$T_{ij} = \left(V - nV' - \frac{\pi\hbar^2 n^2}{\nu m}\right)\delta_{ij} - \frac{\hbar n}{2}\left(\epsilon_{ik}\partial_k v_j + \epsilon_{jk}\partial_i v_k\right)$$

arXiv:2305.16511

2D Odd Viscosity!

 $\nu_o \sim$

ħ

7

Polaritons

- Exciton-Polaritons created when light modes (photons) hybridize with quantum well excitons. [24]
- Resulting quasiparticles are bosonic
- If a condensate is formed, described by wavefunction Ψ in 2D

 \rightarrow admits a fluid description

• System is inherently out of equilibrium, so no action principle

Find fluid description of 2D polariton system

Drag and lift forces on impurities or obstacles?

[24] Sedov, E., Lukoshkin, V.A., Kalevich, V.K., Savvidis, P., & Kavokin, A.V. (2021). Circular polariton currents with integer and fractional orbital angular momenta.[25] Michael D. Fraser

[25]

Wavefunction Description

Start with generalized Gross-Pitaevskii Equation (nonlinear Schrodinger) given by

$$i\hbar\partial_t\Psi = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r}) + \alpha|\Psi|^2 + \alpha_R n_R\right]\Psi + \frac{i\hbar}{2}\left(Rn_R - \gamma\right)\Psi,$$

where

m = effective polariton mass

 $V(\vec{r}) = \text{obstacle potential}$

$$n_R(t, \vec{r}) \simeq \frac{P(\vec{r})}{\gamma_X} \left(1 - \frac{R}{\gamma_X} |\Psi|^2\right)$$

 $\alpha =$ polariton-polariton interaction coupling

 α_R = polariton-exciton interaction coupling

R = stimulated scattering rate from reservoir to polariton mode

 $\gamma =$ polariton decay rate

 $P(\vec{r}) =$ pumping intensity

 $\gamma_X =$ exciton decay rate.

For this work, assume pumping intensity is uniform and constant

gGPE splits into real and imaginary pieces which are fluid type equations:

$$\partial_t \rho + \partial_i \left(\rho v_i \right) = \frac{R}{\gamma_X} \rho P_0 \left(1 - \frac{R}{\gamma_X} \rho \right) - \gamma \rho$$
$$\rho D_t v_i = \partial_j T_{ij} + \rho f_i$$

where the stress tensor and force are:

$$T_{ij} = -\frac{\alpha}{2m} \left(1 - \frac{\alpha_R}{\alpha} \frac{RP_0}{\gamma_X^2} \right) \delta_{ij} \rho^2 - \frac{\hbar R^2 P_0}{4m\gamma_X^2} \epsilon_{ij} \rho^2 - \frac{\hbar}{2m} \rho \left(\partial_i v_j^* + \partial_i^* v_j \right)$$
$$f_i = -\frac{1}{m} \partial_i V$$

Concluding Thoughts

- Parity breaking appears in many physical systems (active fluids, plasmas, superfluids)
- Odd viscosity, in 2D and 3D encapsulates these properties in a fluid description
- Observable effects and common between systems (edge dynamics in 2D, bulk spiral in 3D)
- 3D effects, in general, are not well understood

Thanks for your time...Questions?