Theoretical scaling of the operational density limit in tokamaks and comparison to experimental data

Paolo Ricci1, M. Giacomin2, A. Pau1, O. Sauter1, T. Eich3, P. Manz4, The ASDEX Upgrade Team, JET Contributors, TCV Team

1) EPFL, Swiss Plasma Center (SPC), Lausanne, Switzerland
2) Dipartimento di Fisica G. Galilei, Università degli studi di Padova, Italy
3) Max-Planck-Institute for Plasma Physics, Garching, Germany
4) Institute of Physics, University of Greifswald, Germany

24 January 2024
Limited predictive capabilities of empirical Greenwald limit

\[n_{GW} = \frac{I_p}{\pi a^2} \]

Maximum achievable density in real-time controlled discharges show hidden dependencies
Two mechanisms, providing similar predictions for AUG [Manz et al., NF 2023]:

- **Radiative collapse** [Gates et al., PRL 2012; Zanca et al. PRL 2017; Stroth et al., NF 2022].
- **Enhanced turbulent transport** [Rogers et al., PRL 1998; Eich et al., NF 2021; Brown et al, NME 2021; Singh et al, PPCF 2022].
MARFE onsets precedes disruption

Phenomena triggering the MARFE are key to understand density limit

Change of q and l_i MHD modes, Disruption

Fueling
Density increases
No global instabilities

JET, #80823
Edge pressure gradient collapse precedes MARFE onset

Density increases → Edge cooling → Collisionality increases → Pressure profile collapses at the edge → MARFE onset

Increased turbulent transport
Based on local edge parameters, AUG operational space explained in terms of transition between turbulent regimes.
Properties of boundary turbulence

- $n_{fluc} \sim n_{eq}$
- $L_{fluc} \sim L_{eq}$
- Fairly collisional magnetized plasma (<100 eV, $n_e \sim 10^{19}$ m$^{-3}$)
- Role of neutrals
- Sheath physics
A model to evolve boundary plasma turbulence

Collisional Plasma \rightarrow \text{Braginskii model} \rightarrow \rho_i \ll L, \omega \ll \Omega_{ci} \rightarrow \text{Drift-reduced Braginskii equations}

\frac{\partial n}{\partial t} + [\phi, n] = \hat{C}(nT_e) - n\hat{C}(\phi) - \nabla ||(nV||_e) + n_n\nu_{ion} - n\nu_{rec} + S_n

\begin{align*}
T_e, T_i, \Omega \text{ (vorticity)} & \rightarrow \text{similar equations} \\
V_{||e}, V_{||i} & \rightarrow \text{parallel momentum balance} \\
\nabla \cdot (n\nabla \perp \phi) &= \Omega - \tau \nabla ^2 \perp p_i \rightarrow \text{Poisson equation} \\
\nabla ^2 \perp \psi &= j_|| \rightarrow \text{Ampère equation}
\end{align*}
A model to evolve boundary plasma turbulence

+ coupling with kinetic neutrals

\[
\frac{\partial f_n}{\partial t} + \mathbf{v} \cdot \frac{\partial f_n}{\partial x} = -\nu_{\text{ion}} f_n - \nu_{\text{CX}} (f_n - n_n f_i / n_i) + \nu_{\text{rec}} f_i
\]

STREAMING
\[\nu_{\text{ion}} = n \langle v_e \sigma_{\text{ion}} \rangle\]

IONIZATION
\[\nu_{\text{CX}} = n \langle v_{\text{rel}} \sigma_{\text{CX}}(v_{\text{rel}}) \rangle\]

CHARGE EXCHANGE
\[\nu_{\text{rec}} = n \langle v_e \sigma_{\text{rec}} \rangle\]

RECOMBINATION

We solve in 3D geometry, taking into account turbulent transport, ionization and charge exchange processes, and losses at the vessel

Wersal & Ricci, NF 2015
Boundary conditions at the plasma-wall interface

- Set of b.c. for all quantities, generalizing Bohm-Chodura
- Checked agreement with PIC kinetic simulations
- Neutrals: reflection and re-emission with cosine distribution

Loizu et al., PoP 2012
GBS: our simulation code

- [Ricci et al., PPCF 2012]
- [Paruta et al., PoP 2018]
- [Giacomin et al., JPP 2020]
- [Giacomin et al., JCP 2022]
- [Coelho et al., NF 2022]
- [Halpern et al., JCP 2016]
Turbulent simulations to investigate edge turbulent regimes

- Retain core-edge-SOL interplay
- No separation of equilibrium and fluctuating quantities
- Validated against experimental results [Oliveira, Body et al., NF 2022]

Ricci et al., PPCF 2012, Giacomini et al., JCP 2022
Four regimes of boundary turbulence

- Reduced transport (Drift-wave instability)
- L-mode (Resistive ballooning)
- Beyond the β-limit (Ideal ballooning)
- Beyond the n-limit (Resistive ballooning)

[Giacomini et al., JPP 2020; PoP 2022]
L-mode turbulence driven by resistive ballooning modes

Paolo Ricci

\(\beta_{\text{limit}} \)

\(\sqrt{\frac{\nu_0}{S_p}} \)

(Density / Heating power)
SOL width: balance of perpendicular and parallel transport

\[
\frac{P_{\text{SOL}}}{aR} \sim \frac{1}{qR} \sim c_s p \\
= \langle \tilde{\rho} \tilde{v}_E \times B, r \rangle_t = \frac{1}{B} \left(\tilde{\rho} \frac{\partial \tilde{\phi}}{\partial \theta} \right)_t \sim \frac{\gamma \bar{p}}{L_p k_r^2} \sim \frac{\gamma \bar{p}}{k_\theta}
\]

Removal of driving gradient

Nonlocal linear theory,

\[
\frac{\partial \tilde{\rho}}{\partial r} \sim \frac{\partial \bar{p}}{\partial r}
\]

\[
k_r \tilde{\rho} \sim \frac{\bar{p}}{L_p} (P_{\text{SOL}}, a, R, n, ...)
\]

[Bohm’s SOL width: balance of perpendicular and parallel transport]

[Ricci et al., PRL 2008; PoP 2013; Giacomin et al, JPP 2020]
Good agreement between analytical L_p scaling and simulations

\[L_p \simeq q^{12/17} R^{7/17} P_{\text{SOL}}^{-4/17} a^{12/17} (1 + \kappa^2)^{6/17} n^{10/17} B_T^{-12/17} \]
Good agreement between analytical estimate and multimachine database

Prediction for ITER L-mode: $\lambda_q \simeq 3.5$ mm
Transition to large transport at high density
Theoretical estimate of density limit based on operational parameters

\[L_p = L_p(P_{SOL}, a, R, n, ...) \]

Collapse of edge pressure gradient

\[L_p \sim a \]

\[n_{\text{lim}} = n_{\text{lim}}(P_{SOL}, a, R, ...) \]

[Giacomin et al., PRL 2022]
No need of EM effects to access the density limit: electrostatic modes become large with collisionality
Density limits depends on I_p and α, but also on P_{SOL}.

- **Density limit in physical units:**
 \[n_{\text{lim}} = \alpha A^{1/6} a^{3/14} P_{\text{SOL}}^{10/21} R^{-43/42} q^{-22/21} (1 + \kappa^2)^{-1/3} B_T^{2/3} \]

 α: Numerical coefficient rising from order of magnitude estimates and numerical factors

- **Empirical Greenwald density limit:**
 \[n_{GW} = \frac{I_p}{\pi a^2} \]

- **Density limit in terms of the plasma current:**
 \[n_{\text{lim}} \sim P_{\text{SOL}}^{0.48} R^{0.02} B_T^{-0.38} (1 + \kappa)^{-0.33} \left(\frac{I_p}{a^{1.88}} \right)^{1.05} \]

- **Dependence on power observed in experiments** [Bernert *et al*, PPCF 2014; Esposito *et al*, PRL 2008; Huber *et al*, JNM 2013]
Comparison with density limit in AUG, TCV and JET, in two scenarios

Standard L-mode:

Density increase \rightarrow MARFE \rightarrow MHD modes, Disruption

ITER-relevant H-mode:

L-H transition \rightarrow Density increase \rightarrow H-L transition \rightarrow L mode \rightarrow MARFE \rightarrow MHD modes, Disruption

Data range:

$n: 2 \times 10^{19} - 1.2 \times 10^{20} \ m^{-3}, I_p: 0.1 - 2.5 \ MA, B_0: 1.4 - 3 \ T, P_{SOL}: 0.1 - 9$
Good agreement with experimental data

\[R^2 = 0.80 \]

[Giocomin et al., PRL 2022]
Significant improvement with respect to Greenwald

\[n_{\text{lim}} = \alpha A^{1/6} a^{3/14} P_{\text{SOL}}^{10/21} R_0^{-43/42} q^{-22/21} (1 + \kappa^2)^{-1/3} B_T^{2/3} \]

- Promising approach for real-time control in MAST-U [Berkery et al., PPCF 2023]
- Experimental campaign planned in DIII-D
- Prediction for ITER \((P_{\text{SOL}}=50 \text{ MW}, q=3, B_T=5.3 \text{ T})\): \(n_{\text{lim}} \sim 2.5 \times 10^{20} \text{ m}^{-3} > 2n_{GW}\)
Final remarks

- Density limit set by edge dynamics
- Increase of density leads to higher collisionality, larger transport, triggering MARFE and disruption
- Analytical scaling provided show I_p and a dependence similar to Greenwald, but also P_{SOL} dependence
- Good agreement with AUG, JET and TCV discharges, as well as MAST-U
- Significantly larger safety margin than Greenwald in case of unintentional H-L transition in ITER
- Given possible role of other phenomena in setting density limit in tokamaks, further experimental investigations urgently needed.
Moving forward: multispecies simulation with detachment

A multispecies (D, D⁺, D₂, D₂⁺, e⁻) model allowed first simulations of highly-radiative (detached) scenarios

[Calado et al., PoP 2022, NF 2022, Mancini NF 2023]

Density increases, ionization front moves, heat flux to vessel reduced

Role in density limit?