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Abstract

Recently, the numerical scheme presented in [1] enabled explicit gyroki-
netic simulations of low-frequency electromagnetic instabilities in toka-
maks at experimentally relevant values of plasma beta.

This scheme resolved the long-standing " cancelation problem” that pre-
viously hindered gyrokinetic particle-in-cell code simulations of electro-
magnetic phenomena with inherently small parallel electric fields.

Moreover, the scheme did not employ approximations that eliminate crit-
ical tearing-type instabilities.

Here, we report on the implementation of this numerical scheme in the
global gyrokinetic particle-in-cell code GTS.

Additionally, we present a comprehensive set of verification simulations of
numerous electromagnetic instabilities: kinetic ballooning mode (KBM),
the internal kink mode, the tearing mode, the micro-tearing mode (MTM)
and toroidal alfven eigenmode (TAE) destabilized by energetic ions,
which are all instrumental in understanding tokamak physics.

We also showcase the preliminary nonlinear simulations of the kinetic
ballooning instability and (2,1) island formation due to the tearing mode
instability.

[1] A. Mishchenko, M. Cole, R. Kleiber, A. Konies, Phys. Plasmas 21
(2014) 052113.



Gyrokinetic Equations solved in PIC codes

e Particle drift equations for (R, v, ) are
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where B* = V x A*, Bf = b-B*, A* = Ag + (4 %Un)b and H =

|
mvﬁ/Q + qo.

e In §f simulations the particle weight is defined as w = §f/f with §f =
f — fo. and Vlasov equation with collision operator C[w] reads as

dw d
— = —(1— —In Clw]. 2
o (1—w) = fo+ Clw] (2)
e T he gyrokinetic Poisson for ¢ is given by
noc
B<;
and Ampere’s law for electromagnetic potential AH

—VJ_ . VJ_qb == 57_%' — 57?,6, (3)
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Illustration of Cancellation Problem

2]

To remove time derivative 5

in Eq.(1) introduce p| =+ %AH- which
modifies Ampere’s law

1 41
2
RLA + 541 = 00

e

The skin-term will be incompletely canceled numerically by adiabatic
contribution from 43,

(1 + k2) A = 514y,
4

Here A, = —i(c/w)E). From Poisson equation ¢ = %”SQAh/(pikJ_)Q, and

k| D2
AH Ah‘l‘ Qb A ‘I’ 2k2 ,02]€J2_Ah

The dispersion relation for shear-Alfven waves then has error term 6/()\61{5J_)2

To get correct alfven wave dispersion for k; ~ 1/a we need
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Another way of removing time derivative from
equation of motion

e Switching to a new velocity variable v, defined as

vp = v + L A, (5)

mc
where field quantities A;, and A are defined as

t t
Ah — —C/ E”dt, As — —C/ bo . qudt —|— AH(to), (6)
to

to

with A (t) = Ax(t) + As(t), the guiding center equations for v, become
mi, — IR - VA, = —2B*-VH + ¢b - Vé. (7)
I

c

e Time derivative is eliminated and the r.h.s contains only magnetic drift
and mirror terms.

e Because A,/A| ~ p?k? the error is reduced by factor p?ki

1

p2
W2 = vikﬁ [1 + e)\—;] )

e [0 get correct alfven wave frequency we need
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Pullback scheme to reduce error

To reduce error further do periodic shifts of tg in definition of A,,.

After each shift during the simulation at some time moment t1, As is
reset to be

ATV (1) = A% (t) + A7 (t1) = Aj(t1) (8)
and Ay is reset to zero A" = 0 by setting to =t1 in Eq. (6).

The parallel particle velocity qu(tl) at time t; is different from velocity
v2ld(t1) at the same time

o(t) = o) - AR ) (9)

new q new new
= v (tl)_%Ah (t1) = v (t1). (10)

The value of distribution function carried by the particle is not changed
frew(ty) = fo4(ty) while the value of fo at the particle location in the
phase space is changed as

Fo(up®) = folvy) = fo(vgd — —LAg). (11)
mecC

The weights are changed according to w=1— fo/f



Simulation of (2,2) Alfven mode

Almost cylindrical plasma with R/a = 100, a/p; =25, ¢q =2 and T; = T..

Initial mode profile is an eigenfunction of —V?2 with a smallest eigenvalue
k2 for a given m = 2.

Solve analytical dispersion relation for w

w2

K207 + (1—w—2> (14X + (14 X)] =0 (12)

A

Here wa = vaky, Xei = CeiZ(Ceq) and (i = w/(vliky).
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Removing errors when gradients are present

Linearized VIasov equation can be written symbolically as
(w—kv—wi)w = wgd —w(¢dp—vA) + (qb — %A) kv.
Here ¢ — ¢ and LA, — A. Writing A = %¢ + A, it can be simplified to

*

(w— kv — wy) (w -+ %*¢> = (1 — %) (wgp — wvAyp).

R.H.S contains only small terms in MHD Ilimit.

Large parts %qb contribute to Poisson equation only a small term én/ng =
k7 p?“¢ due to cancellations of contribution from electrons and ions.

If not not canceled correctly, large error term is introduced dn" /ng ~ e%cb

and
5 5 w* 1
wS = w 1 )
ba [ e (WDA> Pf’fi]




MHD equations in gyrokinetic codes

By taking time derivative of gyro-kinetic Poisson equation, using lin-
earized drift-kinetic Vlasov equations and Ampere’'s low to eliminate par-

allel current and setting By = —9,¢ — (1/c)0:A) = 0 we get
w2 b x Voo 4 4w
Vi —5Vie+ OVL0y¢ — 5 E.v (730) =Tz D 0 < wastw >=
A s

47 q2n < Waswr > A2 q2n
22 i ) T <wad(w — k) (w - whwas > ¢
S 5 S °

Here <> means averaging over Maxwellian velocity distribution function.
First two terms represent dispersion equation for shear-alfven wave.
Third term provides free energy for tearing and kink modes.

First term on r.h.s. is a curvature drive for ballooning instability and kink
mode in toroidal geometry.

The last terms is responsible for destabilization of TEA mode by energetic
particles.



"Invariant Embedding’”’ Method Cylindrical
Eigenmode code

For set of linear equations for u = (u1,u2)

—d2u A(r,w)u + B( )du
= A(r,w 7, w)—1U.
dr? ’ " dr

Matrices A(r,w) and B(r,w) are found by solving Vlasov equation.

Introduce matrix R(r,w) as
d

u= R(r,w)—u.
(r w)dr
Equation for R(r,w) is the matrix Riccatti equation
d - _ _ _ . .
d—R('r',w) =1—-R(r,w)B(r,w) — R(r,w)A(r,w)R(r,w).
-

The boundary conditions u(a) = 0 and u(b) = 0 set boundary conditions
for R(r,w)

R(a,w) =0, and R(b,w) = 0.

Integrate Ricatti equation on the interval a < r < ro to obtain R~ (ro,w)
and on the interval ro < r < b to obtain RT(rg,w).



"Invariant Embedding Method” Cylindrical
Eigenmode code, cont’d

The eigehnvalue equation is
det[RT (ro,w) — R~ (rg,w)] = 0.

The method only searches in 2-d complex-w plane, instead of 4-d [w, u5(a)/uj(a)]
space of original system.

After w is found, eigenfunctions are found by solving first order equations
for v = du/dr
d _ _ .
d—v = A(r,w)R(r,w)v + B(r,w)v.
r

With boundary conditions at rational surface r = rq for v = (v1,v2) =
(uy(ro),us(ro) are

vi(ro) =1, and (R, — Ry,)va(ro) + (R, — Ryy) = 0.

Next, use definition of R to find u: u= R(r,w)v.



Drift- Tearing Mode Properties

Ampere law inside the current layer

. 1 a]H 87?E” 62 Oy E||| 5/2 E” A/&g —eE“/me
— W = — — — — | € )
j” ot 47Tj||/62 41d E” 7 ) ’Uﬁ

where A’ = 9, E||| 5/2/E|| =0 A| 5/2/A is obtained from equilibrium equa-
tion outside the layer

Using electrons moment equation

(v — iw)vﬁ = (1 — w*) ek

w

We get relation between the width of the current layer and mode fre-
quency.
b  wtw

A§2 W — wr




Drift-Tearing Mode Properties

The parallel electron current with frequency w can only be driven inside
the narrow region of width § such that (for é < p;)

w(w+iv) ~ [vtek“((S)]Q = [vte |’|5]2
Combining, we obtain the dispersion relation for drift-tearing mode
(w-w =2 (1+2)
w
where e = viek| A7

Forv=0and w* =0, w=1v., J§=2746=A6.

For v =0 and w* >> 7., w = w* 4+ 17, 5=5C(°:;—*>.

1/3 2/3
For v >> ~,. and w*ZO,wZi%(Vﬂ) : 5256(%) .

For w* %= 0 and v >> w*, wzw*—l—i%(’ﬂ)l/z, 5250%.

w



Simulation of (2,1) Tearing mode

e a/p; =50, R/a = 100, q(r) = 1.725/(1 — 0.5r2/a?), 3. = 0.001, R/L = 0,
/p /
v = 0.

o wors = 0.113¢s/R while weijg = 0.115¢,/R.
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Simulation of (2,1) Drift-tearing mode, R/L, =5

e a/p; = 50, R/a = 100, q(r) = 1.725/(1 — 0.5r?/a?), B = 0.001, R/Ly =
0,R/L,=5,v=0.

e wers = (—0.37 +40.13)cs /R while weiy = (—0.36 + i0.13)c,/R.
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Simulation of (2,1) Drift-tearing mode,
R/LTG =5

e a/p; =50, R/a = 100, q(r) = 1.725/(1 — 0.5r?/a?), B. = 0.001, R/Ly. =
5R/L,=0,v=0.

e wers = (—0.24 4+ 40.10)cs/R While weiy = (—0.23 +i0.10)¢s/R.
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Micro-tearing Mode

A’ > 0 is satisfied only for small mode numbers (e.g., m = 2 or 3).

For higher mode numbers, a tearing mode can also be destabilized with
a much larger growth rate v > ~. due to the dependence of the electron
collision frequency on velocity

(s -
ve) [1 + iz/(v)/w]l/2 , ’

(1-5)0(0)- 0 (0) -
w w 2w w w

where v is characteristic value of collision frequency.

or

If wi, =0, w~w} and the mode is stable (if 7./w;; < 1 is neglected)

If wy,, # 0 the mode is unstable. For example for w); =0

w %
Y= (w* ) |
Te Te




Implementation of collisions in GTS and
eigenmode code

e C[6fe] is the electron pitch-angle scattering collision operator

V()0 (20
> o¢ 1-¢ )(%5]“6,

where & = v“/v has been implemented in the code using Langeven equa-
tion

Clofe] =

fu|’| = y)[1 - v(v)dt(1 + a?)/2] —viay/v(v)dt,

where o takes randomly on values +£1 and
3
v(v) =v (%)
v

e Matrices A(r,w) and B(r,w) are found by solving collisional Vlasov equa-
tion and solution for electron current and density can be expressed exactly
using " continued” fractions, i.e.,

bo

Ao = /v”dvFeo(v)[ao -+ ™

b2
az + - -

e with a, and b, being functions of kjv/w, w*/w, and v(v)/w and index n,
and converge very fast for v/w > 0.1.

a1 +
az +



Simulation of (8,3) Micro-tearing mode

e a/p; = 25, R/a = 100, q(r) = 1.725/(1 — 0.5r2/a?), B

R/L, =0, R/Lrc =2, R/Ly; =0, v=1v/(v/vn)?
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(1,1) Kink mode

In tokamaks with R/a >> 1 and circular flux-surfaces and no Shafranov
shift MHD equations for £ = ¢/r with £ =) exp(im#)&,, take form

- ( aoit 2 | gpbm=r = Hy Brem=2
d 5( 5 v\ d 5 2 . r3d g3
i (rhan+ 1) drtn2 =3 (v + I3 ) Gnme = R 0 e

here ng, )| =n — m/q(r)
Terms on the r.h.s come from pressure-curvature coupling.

The strength of the coupling scales as BLE.

For BR/L, < 1, &m=1 =~ const all the way to rational surface ¢ = 1 where
coupling becomes significant, since n 1) =~ 0.

Coupling removes the singularity near rational surface and localizes the
mode inside ¢ = 1 surface.



Simulation of (1,1) Kink mode

e a=1m, R/a =10, B= 1T, a/p; = 180, q(r) = 0.8(1 4+ r?/a?).
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Computer Phys. Comm., 238, 194-202 (2019).



Toroidal Alfvenic Eigenmode

MHD equations for TAE in the limit R/a > 1 and fR/a < 1 are

VJ_ . —QVqu - nHVLn”cb — O,
Wa

where ny =mn —m/q(r).
Near a surface where n,,| = —n,,41, the modes with m and m + 1 are

resonantly coupled due to a weak dependence of wy ~ B on poloidal
angle 6.

This coupling removes the degeneracy at the crossing point producing a
frequency gap.

It also produces an effective potential well for the mode which confines
it near the crossing point producing a global TAE mode.

If energetic particles are present near phase velocity of the wave, the
wave can become unstable.

The mode is damped by electrons and background ions and by interaction
with alfvenic continuum.



Simulation of n=6 TAE mode

Hydrogen plasma with a

lm,R = 10m, B

0.16(r/a)?, n=2-10¥m=3, T, = T, = 1keV

Hot species: deuterium with Maxwellian velocity distribution with 100keV <

T, < 800keV
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Simulation of ITG-TEM-KBM transition

e Cyclone base case (CBC) hydrogen plasma with a/p; =50, R/L, = 2.22,

R/LTZ' — R/LTe = 6.92.
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[1] " Verification of a fully implicit particle-in-cell method for the v”—formalism
of electromagnetic gyrokinetics in the XGC code”, B. J. Sturdevant, Physics

of Plasmas 28, 072505 (2021).



ITG mode, 5. = 0.001

Comparison of GTS results with results of XGC, GEM and GENE.
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KBM mode, 3. = 0.025

Comparison of GTS results with results of XGC, GEM and GENE.
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Nonlinear simulations of CBC case with a/p; =
50 and 8. = 0.03

e Above threshold for KBM instability at 8. = 0.013.

e Heat flux is mostly in electron channel due to parallel transport along
fluctuating magnetic field.

e Fluxes are 5x higher compared to 8. = 0.005 CBC case.

e Fluxes oscillate due to periodic recovery of the linear mode structure
which can be a sign of predator-pray dynamics.
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Nonlinear simulation of (2,1) tearing and
double-tearing

Possibility to study NTM since trapped particles are included.

(2,1) —double tearing mode responsible for anomalous current penetra-
tion during fast current ramp-up.

May explain internal disruptions in cases with g 1.

Maybe responsible for ITB in advanced tokamaks with negative shear.
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Conclusion and Future work

We have presented the implementation of EM pull-back scheme in GTS
code.

Numerous benchmarks against the eigenmode code and published results
showcase the new capabilities of the code to simulate wide range of EM
phenomena relevant to modern tokamaks.

We also presented the nonlinear simulations of the kinetic ballooning
instability in @ model Cyclone plasma showing that KBM turbulence can
be robustly simulated with §f gyrokinetic codes.

Finally, we have also shown that the code is now capable of simulating
non-linear, low-n, reduced MHD (low-beta) physics relevant for thermal
quench. That includes kink and tearing modes which are considered as
one of the major MHD perturbations that may lead to tokamak disrup-
tion.

This new capability represents a major advance in studying these insta-
bilities which up to now has been exclusively studied using fluid MHD
codes with ad- hoc models for plasma resistivity and heat conductivity
invalid for the hot and highly anisotropic fusion plasmas.

On the hand our EM-GTS simulations can be considered as the first-
principial simulation approach to studying these instabilities with all ki-
netic effects properly included.



Drift-Tearing Mode scaling

e For cylindrical plasma, drift-tearing mode scaling are

de al’
pi B(mi/me)p*7
Ve 5 s(rsA) (a)2
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e where s = dlIng/dInr, p. = pi/a, (n,m) are toroidal and poloidal mode
numbers, and r, is the location of the rational surface.

e For moderate B of several percent, 8./p; ~ p« and ~./(cs/R) ~ p2, which
are quite small for p, < 1.

e For the mode with v ~ w,, the width of the current layer is
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Micro-tearing Mode Properties, cont’'d
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o If w}, # 0 the mode is unstable. For example for w;, =0

w v
wx :F<w*>'
Te Te




e Function F(z) is plotted below for Maxwellian plasma and v(v) = v(vie/v)3

e For given wj,, the growth rate is maximized Imw ~ 0.2w},, for 5 < v/wj, <
20.

e For given w}, the the mode frequency 1/2 < Rew/w}., < 5/4.



Micro-tearing Mode Properties, cont’d

The role of neglected ~./(cs/R) ~ —m?p2/B (for m > 1) is to provide
stabilization of the mode with sufficiently large m.

Therefore the most unstable mode scales as

B my my
m~ — , Ofr, kep@ i 6 )
Px MmMe Me

Provided that v/(cs/R) ~ wi,/(cs/R) ~ mps«(R/LTc).

Localized micro-tearing mode can exist only if w ~ w}, < wa(p;i), or

d (kjcs R \? s\ 2
. i— , ofr, - Gladd, 1980.).
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