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Overview and Context
▶ Rotation protects against resistive-wall modes, which can cause

disruptions. NBI won’t drive strong rotation in ITER or an FPP.
▶ Luckily, even without applied torque, the edge usually rotates co-current.

▶ The modulated-transport model explains this rotation with an interaction
of ion drift orbits with rapid spatial variation of turbulent viscosity [1].
▶ So far, it’s been tested on TCV [2], DIII-D [3, 4], and ASDEX-Upgrade

[5], in a wide variety of conditions.
▶ However, the model assumed that turbulent viscosity decayed

exponentially in the radial direction—want to relax this assumption.
▶ In this new work, we let the turbulent viscosity depend on space in an

axisymmetric but otherwise arbitrary way.
▶ To do this, we assume normalized viscosity is weak, roughly: pedestal-top

ion transit time much shorter than transport across the pedestal
▶ The result is more flexible and the calculation is technically much easier.
▶ We test the simplified calculation and bound its error using a rigorous (but

much more challenging) semi-differential operator based calculation.
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Outline

▶ Experimental background and basic model
▶ Simple boundary-layer calculation
▶ Application to rotation: simple formulas for experimental use
▶ Semi-differential operators
▶ Sketch of technical solution using semi-differential operators
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Experimentally, H-mode plasmas rotate spontaneously,
without external torque.

0

20

40

60

80

100

V T
or

(k
m

/s
)

0 50 100 150 200
Change in Edge Grad T (keV/m)

H- mode
I- mode

T
i
(keV)

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

V
�
(k
m
/s
)

co-
Ip

Rice et al PRL 2011, Fig. 5b deGrassie et al NF 2009, Fig. 7

▶ Co-current, especially in the edge. ▶ Spin-up at L–H transition.
▶ vφ/vti ∼ O(10ths) at the pedestal top. ▶ Roughly proportional to W /Ip.

▶ Edge rotation proportional to T or ∇T?
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Differential transport can be caused by drift orbits’
interaction with the diffusivity’s spatial variation.

co

ctr
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Model and analysis
Rotation application

We begin with a deceptively simple transport model,

∂t fi +bφv∂y fi −bφ δv2(siny)∂x fi −∂x [D(x ,y)∂x fi ] = 0

Gyrokinetic equation⇒average over turbulence⇒ ρi

Lx
, Lxa ,

1
q ,

a
R0
, vE /a
vti/qR0

≪ 1

▶ Turbulent D=⇒purely diffusive turbulence, “null hypothesis”
▶ arbitrary x ,y dependence, except D > 0
▶ assumed small D ≪ 1: central ordering of this work

▶ dimensionally, (Ddim/L2
x )≪ (vti |pt/qR0)

▶ No acceleration of ions’ parallel velocity v : allows v -by-v solve
▶ Collisionless: good for superthermal ions
▶ No µ∇B force: “deeply-passing” approximation

▶ Axisymmetric, radially-thin simple-circular geometry

▶ E×B flows below poloidal sound speed

Normalizations: v :vti |pt, y :a, x :Lx , t:qR0/vti |pt, fi :ni |pt/vti |pt, D:L2
xvti |pt/aB0
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Model and analysis
Rotation application

which captures the radially-global nature of the problem.
∂t fi +bφv∂y fi −bφ δv2(siny)∂x fi −∂x [D(x ,y)∂x fi ] = 0

0

2π

x

θ

v‖>0:fi=0

periodic
⇐=
fi→fi0

=⇒
fi→0

x
θ

▶ Solve for fi ∼ F0, “equilibrium” distribution
▶ necessary to resolve global problem structiure
▶ integrated over µ

▶ resulting fi not symmetric in parallel velocity v
or poloidal angle y

▶ Pedestal-SOL formulation in boundary conditions:
▶ Spatial variation of turbulent diffusivity
▶ δ

.
= qρi |pt/Lx a free parameter (may ≈ 1 in experiment)

▶ Invariant to rigid toroidal rotation vrig
▶ Trivial conservation of a simplified toroidal momentum:∫

dv
(
v + vrig

)
fi
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Model and analysis
Rotation application

An initial variable transform simplifies the equations.
Transform to drift surface label

x̄
.
= x−δv (cosy − cosy0)

to get a simple form for the equation

bφv∂y fi = ∂x̄ [D(((x(x̄ ,y),y)))∂x̄ fi ],

boundary conditions

fi (x̄ ≤ 0,y0) = fi (x̄ ≤ 0,y0+2π),

fi (x̄ > 0,y0,bφv > 0) = 0,
fi (x̄ > 0,y0+2π,bφv < 0) = 0,

fi (x̄ → ∞,y)→ 0,
fi (x̄ = x̄ℓ,y) = fi0(v),

and v -dependent surface-integrated flux (constant across x̄ℓ ≤ x̄ ≤ 0):

Γ(v)
.
=

∮
dS ·ΓΓΓ =−

∮
dy (D∂x̄ fi )(x̄ ,y),
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Model and analysis
Rotation application

In the bulk, away from the LCDS, fi is constant along drift
orbits.
In the bulk, meaning x̄ < 0, |x̄ | ∼ O(1), decompose

f̄i (x̄)
.
=

1
2π

∮
dy fi , f̃i (x̄ ,y)

.
= fi − f̄i ,

then our simple equation becomes

bφv∂y f̃i = ∂x̄ [D(x̄ ,y)∂x̄(f̄i + f̃i )]

▶ Since
∮

dy f̃i = 0, must have ∂y f̃i ∼ f̃i .
▶ On the bulk, ∂x̄ ∼ O(1), so ∂x̄(D∂x̄ f̃i )≪ ∂y f̃i .
▶ Neglect ∂x̄(D∂x̄ f̃i ), then integrate

∮
dy for the solvability constraint

0 ≈
∮

dy ∂x̄ [D(((x(x̄ ,y),y)))∂x̄ f̄i ] = ∂x̄(D̄∂x̄ f̄i ), and Γ≈−D̄∂x̄ f̄i , where

D̄(x̄)
.
=

∮
dy D(x̄ ,y), thus

fi0− f̄i (x̄ = 0) =−
∫ 0

x̄ℓ
dx̄ ∂x̄ f̄i ≈ Γ

∫ 0

x̄ℓ
dx̄ D̄−1.
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Model and analysis
Rotation application

In the layer, use local LCDS values to simplify.
Outside the “last closed drift orbit” (LCDS), meaning x̄ > 0, fi =

∫ y
y0

dy ∂y fi

so f̃i ∼ f̄i , inconsistent with the bulk orderings.
So, the equation bφv∂y fi = ∂x̄(D∂x̄ fi ) implies steep gradients
∂x̄ ∼ O(D−1/2), in the near-LCDS layer |x̄ | ∼ O(D1/2).
Since |x̄ | ≪ 1 in the layer, take D(x̄ ,y)≈ D(0,y), then use a y transform

ȳ(y)
.
=

1
D̄0

∫ y

y0
dy ′D(0,y ′),

D̄0
.
= D̄(x̄ = 0),

switch ȳ → 1− ȳ for v < 0, and define
u(x̄)

.
= (|v |/D̄0)

1/2x̄ ,
then

∂ȳ |ufi = ∂u|2ȳ fi
with left-hand matching condition:

fi (u →−∞, ȳ)≈ c0+ c1u.

Baldwin et al found c0/c1 = ζ (1/2)/
√

π ≈−0.824 [6].
Stoltzfus-Dueck and Brzozowski, III Transport-driven Toroidal Rotation: General D (10)



Simple Boundary Layer
Mathematically Detailed

Model and analysis
Rotation application

Match the solutions to determine flux Γ and rotation vrig.
Match f̄i and its radial derivative for bulk x̄ → 0− and layer u →−∞:

f̄i (x̄ = 0) = c0,

Γ≈−(D̄∂x̄ f̄i )(x̄ = 0) =−(|v |D̄0)
1/2c1

thus f̄i (x̄ = 0) = (−c0/c1)Γ/(|v |D̄0)
1/2 and

Γ(v)≈ fi0∫ 0
x̄ℓ

dx̄ D̄−1+(−c0/c1)/(|v |D̄0)1/2

Γ implies a viscous momentum flux vrigΓ
p, intrinsic momentum flux Π, and

ion heat flux (Γp+Q∥) for moments

Γp
.
=

∫
dv Γ, Π

.
=

∫
dv vΓ, Q∥

.
=

∫
dv

1
2
v2Γ.

With applied torque τN , steady-state momentum conservation demands

τ
N = vrigΓ

p+Π.
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Model and analysis
Rotation application

In simple limits, we get simple dimensional formulas.
Assume D1/2,δ ≪ 1, D(x ,y) = Dx(x)Dy (y), canonical Maxwellian fi0.
Model predicts the dimensional intrinsic and viscous momentum fluxes:

Πint ≈ 1.39(R̄X − 1
2
deff

c )
(µi/2)qR0(m)Qi (MW)

ZiB0(T)Leff
φ
(cm)

N·m,

Πvisc ≈ 0.0139
(µi/2)R0(m)Qi (MW)

Ti |pt(keV)
vϕ(km/s)N ·m.

Dimensional momentum balance with applied torque τ ,
τ =Πint +Πvisc,

is easily solved for core-edge-boundary rotation

vϕ ≈ vint +71.9
Ti |pt(keV)τ(N ·m)

(µi/2)R0(m)Qi (MW)
km/s,

vint ≈ 100(deff
c /2− R̄X )

qTi |pt(keV)

ZiB0(T)Leff
φ
(cm)

km/s.
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Model and analysis
Rotation application

As always, care is needed for theory-experiment comparison.
In the formulas, µi is ion mass (in amu), R0

.
= (Rin +Rout)/2, and

R̄X
.
= [2RX − (Rout +Rin)]/(Rout −Rin),

with RX , Rin, and Rout the major radii of the X-point and inner- and
outer-most points of the LCFS.
▶ Usually deff

c ≈ dc for dc(x)
.
= 2

Dz

∮
dy D cosy , Dz(x)

.
=

∮
dy D.

▶ The effective decay length is defined for D with any x dependence:

Leff
φ

.
=

∫ 0

xℓ,dim
dxdim [Dz(0)/Dz(xdim)],

▶ The safety factor is really measuring orbit width, one best uses either

q≈ qeff,B
.
=

B0(Rout −Rin)

2BpR
, or q≈ qeff,I

.
= 5

Rout −Rin

2R0

B0(T)ℓp(m)/2π

Ip(MA)
,

▶ Torque τ refers to true torque: Include NTV torque and actual
deposited NBI torque [4]. Exclude “intrinsic torque.”

▶ Best radial point often just inside the pedestal top, or L-mode analog.
▶ Kludge for ion trapping: multiply Πint and vint by fpass [4].
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Semi-differential operators
Sketch of rigorous solution

We can define a definite semi-integral and semi-derivative.
For arbitrary function h(0 ≤ ȳ ≤ 1), define:

(∂
−1/2
ȳ0 h)(ȳ)

.
=

∫ ȳ

0
dυ

h(υ)√
π(ȳ −υ)

=
∫ ȳ

0
dτ

h(ȳ − τ)√
πτ

,

(∂
+1/2
ȳ0 h)(ȳ)

.
= ∂ȳ∂

−1/2
ȳ0 h,

The convenient integral 1
π

∫ ȳ

υ

dȳ ′
1√

(ȳ − ȳ ′)(ȳ ′−υ)
= 1.

then implies that ∂
−1/2
ȳ0 ∂

−1/2
ȳ0 h =

∫ ȳ

0
dυ h.

One may similarly show that ∂
+1/2
ȳ0 ∂

+1/2
ȳ0 h(ȳ)

.
= ∂ȳh.

These operations, and more general cases, are discussed in great detail by
Oldham and Spanier, “The Fractional Calculus,” Academic Press Inc.
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Semi-differential operators
Sketch of rigorous solution

Semi-integrals and semi-derivatives for periodic functions:
Expand arbitrary function h(0 ≤ ȳ ≤ 1) in Fourier series:

h(ȳ) = ∑
m

ĥme
2π imȳ , h̃

.
= ∑

m ̸=0
ĥme

2π imȳ

The derivative and zero-mean (“periodic”) integral of h̃ are

∂ȳ h̃ = ∑
m

2π im ĥme
2π imȳ ,

∫
p

dy h̃ .
= ∑

m ̸=0
ĥme

2π imȳ/2π im

Define a “periodic semi-derivative” and “periodic semi-integral” as
∂
+1/2
ȳp h̃ = ∑

m

√
2π im ĥme

2π imȳ , ∂
−1/2
ȳp h̃

.
= ∑

m ̸=0
ĥme

2π imȳ/
√

2π im

We can also evaluate these in real space:

∂
−1/2
ȳp h̃

.
=

∫ 1

0
dτ g(τ)hext(ȳ − τ),

∂
+1/2
ȳp h̃

.
= ∂ȳ∂

−1/2
ȳp h̃,

g(τ) = gf(τ)
.
= ∑

m ̸=0
e2π imτ/

√
2π im, or

g(τ)= gs(τ)
.
= 1/

√
πτ+

∞

∑
n=0

gs,nτ
n.

gs

τ

gf

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

3
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Semi-differential operators
Sketch of rigorous solution

An alternative reformulation facilitates more detailed
mathematical analysis.
Recast the exact kinetic equation with the layer ȳ and a new radial variable

ū(x̄)
.
= (|v |D̄0)

1/2
∫ x̄

0
dx̄ ′ / D̄(x̄ ′), obtaining

∂ȳ fi −∂
2
ū fi = ∂ū(d̃∂ūfi )− d̄∂ȳ fi , with

d̄(ū)
.
= [D̄(ū)− D̄0]/D̄0 = D̄(ū)/D̄0−1,

d̃(ū, ȳ)
.
= [D(ū, ȳ)/D̄(ū)]/[D(0, ȳ)/D̄0]−1,

where d̄(0) = d̃(0, ȳ) = 0, ∂ud̄ ,∂u|ȳ d̃ ∼ O(D1/2), and
∫ 1
0 dȳ d̃ = 0.

Most boundary conditions unchanged:
fi (ū ≤ 0, ȳ = 0) = fi (ū ≤ 0, ȳ = 1), fi (ū > 0, ȳ = 0) = 0, fi (ū → ∞,y)→ 0.

But at the core-edge boundary, require only (∂ȳ fi )(ūℓ, ȳ) = 0. Set overall
magnitude by setting Γ = Γ0 for the exact flux

Γ =−(|v |D̄0)
1/2

∫ 1

0
dȳ (1+ d̃)∂ūfi .

Stoltzfus-Dueck and Brzozowski, III Transport-driven Toroidal Rotation: General D (16)
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Semi-differential operators
Sketch of rigorous solution

Take asymptotic small-D limit of the reformulated problem.

To find fa, a D ≪ 1 approximation to fi , we neglect d̄ , d̃ ∼ O(D1/2|ū|),
obtaining

∂ȳ fa −∂
2
ū fa = 0.

Boundary conditions are unchanged, except now (∂ȳ fa)(ū →−∞, ȳ) = 0,
and Γ = Γ0 applies to

−Γ/(|v |D̄0)
1/2 =

∫ 1

0
dȳ ∂ūfa = ∂ū f̄a,

where f̄a
.
=

∫ 1

0
dȳ fa, f̃a

.
= fa − f̄a.

To calculate fi0 ≈ f̄a(ūℓ) as a function of Γ0:

f̄a(ūℓ) =−
∫ 0

ūℓ
dū ∂ū f̄a + f̄a(0) =

Γ|ūℓ|
(|v |D̄0)1/2

+ f̄a(0),

we need “only” find f̄a(0, ȳ). But this requires to solve separately for the
edge fa(ū ≤ 0), SOL fa(ū > 0), and then enforce continuity at ū = 0.

Stoltzfus-Dueck and Brzozowski, III Transport-driven Toroidal Rotation: General D (17)
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Semi-differential operators
Sketch of rigorous solution

A basic Green’s function form facilitates our solution.
If we knew fa(ū ≤ 0, ȳ = 1), our solution would be

fa(ū, ȳ) =
∫ 0

−∞

dξ fa(ξ , ȳ = 1)G (ū−ξ , ȳ),

with standard diffusion Green’s function (with general arguments ŭ, y̆)

G (ŭ, y̆)
.
= exp(−ŭ2/4y̆)/

√
4π y̆ .

Since G (ŭ, y̆ > 0) is smooth, so is fa(ū, ȳ > 0), thus also fa(ū, ȳ = 0),
except right at ū = ȳ = 0.

Since fa(ū,1) is smooth, we may Taylor expand it about ū = 0 and
substitute in GF formula to get

fa(ū = 0, ȳ) =
∞

∑
n=0

bnȳ
n/2,

from which we may evaluate

fa(ū = 0, ȳ = 0) =
1
2
fa(ū = 0, ȳ = 1).

Stoltzfus-Dueck and Brzozowski, III Transport-driven Toroidal Rotation: General D (18)
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Semi-differential operators
Sketch of rigorous solution

The edge solution is captured by a semidifferential relation.
For ū ≤ 0, expand

fa(ū ≤ 0, ȳ) = f̄a(ū)+ ∑
m ̸=0

f̂m(ū)e
2π imȳ

in our differential equation
∂ȳ fa −∂

2
ū fa = 0,

then trivially solve for

f̄a(ū ≤ 0) = c0+ c1ū,

f̃a(ū ≤ 0, ȳ) = ∑
m ̸=0

f̂mce
√

2π imūe2π imȳ ,

with unknown constants c0, c1, f̂mc.
By

√
2π im, we always intend the branch with positive real part, ∝ 1± i .

Recalling our definitions, this implies the semi-differential relationship
∂ū f̃a(ū ≤ 0, ȳ) = ∂

+1/2
ȳp f̃a(ū ≤ 0, ȳ).

Stoltzfus-Dueck and Brzozowski, III Transport-driven Toroidal Rotation: General D (19)
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Semi-differential operators
Sketch of rigorous solution

The SOL solution follows a different semidifferential relation.
For ū > 0, use GF form for fa, along with its ū partial:

(∂ūfa)(ū, ȳ) =
−1
2ȳ

∫ 0

−∞

dξ fa(ξ ,1)(ū−ξ )G (ū−ξ , ȳ)

If we recall the definite semi-integral,

(∂
−1/2
ȳ0 h)(ȳ)

.
=

∫ ȳ

0
dυ

h(υ)√
π(ȳ −υ)

=
∫ ȳ

0
dτ

h(ȳ − τ)√
πτ

,

then we can carry out the integral to get

∂
−1/2
ȳ0 ∂ūfa =−

∫ 0

−∞

dξ fa(ξ ,1)G (ū−ξ , ȳ)sign(ū−ξ ),

(∂
−1/2
ȳ0 ∂ūfa)(ū ≥ 0, ȳ) =−fa(ū ≥ 0, ȳ).

Stoltzfus-Dueck and Brzozowski, III Transport-driven Toroidal Rotation: General D (20)
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Semi-differential operators
Sketch of rigorous solution

Enforce continuity of fa and ∂ūfa at ū = 0 to find
self-consistent solution.
Use fa(0−, ȳ > 0) = fa(0+, ȳ) in (∂

−1/2
ȳ0 ∂ūfa)(0−, ȳ > 0) = (∂

−1/2
ȳ0 ∂ūfa)(0+, ȳ):

∂
−1/2
ȳ0 ∂

+1/2
ȳp f̃a +2c1

√
ȳ/π =−fa,

with c1 already known. Rearrange, using ∂
−1/2
ȳ0 ∂

+1/2
ȳ0 f̃a = f̃a:

2fa − c0+2c1
√

ȳ/π = ∂
−1/2
ȳ0 (∂

+1/2
ȳ0 −∂

+1/2
ȳp )f̃a.

One may derive an integral form for the operator on the RHS:

∂
−1/2
ȳ0 (∂

+1/2
ȳ0 −∂

+1/2
ȳp )h̃ =

∫ 1

0
dτ g∆(ȳ ,τ)h(1− τ),

g∆(ȳ ,τ) =

√
ȳ/π√

τ(ȳ + τ)
+

√
ȳ

π

∞

∑
n=0

(−1)nζ (n+
3
2
,τ +1)ȳn−1.

Define fa,sh(ȳ)
.
= fa(0, ȳ)− c0/2 = f̃a + c0/2, then we have

2fa,sh +2c1
√
ȳ/π =

∫ 1

0
dτ g∆(ȳ ,τ)fa,sh(1− τ).

Stoltzfus-Dueck and Brzozowski, III Transport-driven Toroidal Rotation: General D (21)
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Semi-differential operators
Sketch of rigorous solution

Iteration on the semi-differential operator is convergent.
Consider the problem

h(0 < ȳ ≤ 1)−h(0)(ȳ) =
1
2

∫ 1

0
dτ g∆(ȳ ,τ)h(1− τ),

with specified function h(0) satisfying |h(0)|(ȳ)≤ b0.
Define

h(q+1)(ȳ) =
1
2

∫ 1

0
dτ g∆(ȳ ,τ)h

(q)(1− τ),

then one may bound

|h(q≥1)|(ȳ)≤ bq(1−
√
ȳ/4), for bq≥1

.
= b0r

q−1,

for positive constant r < 0.82. This implies that h may be expressed as a
convergent sum

h =
∞

∑
q=0

h(q), which is bounded by
∞

∑
q=0

bq =
2− r

1− r
b0 < 6.46b0.

Stoltzfus-Dueck and Brzozowski, III Transport-driven Toroidal Rotation: General D (22)
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Semi-differential operators
Sketch of rigorous solution

Iterative approximations for fa(0, ȳ) converge rapidly.

Use the iterative scheme with h = fa,sh and h(0) =−c1
√
ȳ/π.

Exact results: c0/c1 = ζ (1/2)/
√

π ≈−0.823917, fa(0+) = fa(1)/2.

Define: c0 ≈ c
(Q)
0

.
= ∑

Q
q=0 2

∫ 1
0 dȳ f (q)a,sh

f
(Q)

a
.
= ∑

Q
q=0 f

(q)
a,sh + c

(Q)
0 /2.

Convergence is rapid:
f
(0)

a : c
(0)
0 ≈−0.752c1,

f
(0)

a (ȳ → 0+)/f
(0)

a (ȳ = 1) = 2/5.
f
(1)

a : c
(1)
0 ≈−0.829249c1 (<1% off),

f
(1)

a (ȳ → 0+)/f
(1)

a (ȳ = 1)≈ 0.506.
f
(2)

a : c
(2)
0 ≈−0.82356c1 (<0.05% off),

f
(2)

a (0+)/f
(2)

a (1)≈ 0.49964 (<0.1% off).

y

fa
(0)

10 (fa
(1)-fa

(0))

100 (fa
(2)-fa

(1))
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0
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The asymptotic solution reproduces the boundary-layer
solution, and can be shown to be O(D1/2) accurate.
Substitute f̄a(0) = c0 = (c0/c1)c1 =−Γ(c0/c1)/(|v |D̄0)

1/2

|ūℓ|= (|v |D̄0)
1/2

∫ 0

x̄ℓ
dx̄ D̄−1(x̄)

into f̄a(ūℓ) equation to get

f̄a(ūℓ) = Γ
[∫ 0

x̄ℓ
dx̄ D̄−1+(−c0/c1)/(|v |D̄0)

1/2],
equivalent to boundary layer results for fi0 = f̄a(ūℓ).

We were then able to demonstrate D1/2 convergence as follows:
▶ Define f∆

.
= fi − fa, which solves (exact eqn) - (asymptotic eqn).

▶ Solve for its leading-order portion fδ , using similar methods as here.
▶ Eval |fi (ūℓ)− f̄a(ūℓ)| with f∆ → fδ , it’s bounded by O(D1) constant.
▶ Show that one may bound the ratio of (error after fδ solution) over

(error after fa solution) by a constant of O(D1/2).
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Summary

▶ Drift orbits beat with spatial variation of turbulent D causing unequal
orbit-averaged diffusivity for co- and counter- ions.

▶ Assuming (Ddim/L2
x )≪ (vti |pt/qR0), we may approximately solve for the

resulting rotation, even for a D(x ,y) with arbitrary spatial dependence.
▶ A simple boundary-layer method produces a quick, intuitive answer.

▶ This method may be applied to more general problems,
e.g. self-consistent rotation with short-charge-exchange-length neutrals

▶ Simple limits of this answer give relatively convenient dimensional formulas
for rotation at the core-edge boundary.
▶ As always, care is needed when using idealized theory to model

experiment.
▶ A more detailed calculation allows us to verify the boundary layer answer

and its accuracy to O(D1/2).
▶ This approach also produces concrete approximate forms for the strong

SOL and near-LCFS flows.
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