Transport-Driven Toroidal Rotation with General Viscosity Profiles

T. Stoltzfus-Dueck and R. Brzozowski, III, Princeton Plasma Physics Lab

PPPL Theory Seminar

Feb. 15, 2024

Overview and Context

- Rotation protects against resistive-wall modes, which can cause disruptions. NBI won't drive strong rotation in ITER or an FPP.
- Luckily, even without applied torque, the edge usually rotates co-current.
- The modulated-transport model explains this rotation with an interaction of ion drift orbits with rapid spatial variation of turbulent viscosity [1].
- So far, it's been tested on TCV [2], DIII-D [3, 4], and ASDEX-Upgrade [5], in a wide variety of conditions.
- However, the model assumed that turbulent viscosity decayed exponentially in the radial direction-want to relax this assumption.
- In this new work, we let the turbulent viscosity depend on space in an axisymmetric but otherwise arbitrary way.
- To do this, we assume normalized viscosity is weak, roughly: pedestal-top ion transit time much shorter than transport across the pedestal
- The result is more flexible and the calculation is technically much easier.
- We test the simplified calculation and bound its error using a rigorous (but much more challenging) semi-differential operator based calculation.

Outline

- Experimental background and basic model
- Simple boundary-layer calculation
- Application to rotation: simple formulas for experimental use
- Semi-differential operators
- Sketch of technical solution using semi-differential operators

Experimentally, H-mode plasmas rotate spontaneously,

 without external torque.

- Co-current, especially in the edge.
- $v_{\phi} / v_{t i} \sim O\left(10^{\text {ths }}\right)$ at the pedestal top.

deGrassie et al NF 2009, Fig. 7
- Spin-up at L-H transition.
- Roughly proportional to W / I_{p}.
- Edge rotation proportional to T or ∇T ?

Differential transport can be caused by drift orbits' interaction with the diffusivity's spatial variation.

We begin with a deceptively simple transport model,

$$
\partial_{t} f_{i}+b_{\phi} v \partial_{y} f_{i}-b_{\phi} \delta v^{2}(\sin y) \partial_{x} f_{i}-\partial_{x}\left[D(x, y) \partial_{x} f_{i}\right]=0
$$

Gyrokinetic equation \Rightarrow average over turbulence $\Rightarrow \frac{\rho_{i}}{L_{x}}, \frac{L_{x}}{a}, \frac{1}{q}, \frac{a}{R_{0}}, \frac{v_{E} / a}{v_{t i} / q R_{0}} \ll 1$

- Turbulent $D \Longrightarrow$ purely diffusive turbulence, "null hypothesis"
- arbitrary x, y dependence, except $D>0$
- assumed small $D \ll 1$: central ordering of this work
- dimensionally, $\left(D^{\mathrm{dim}} / L_{x}^{2}\right) \ll\left(\left.v_{\mathrm{t} i}\right|_{\mathrm{pt}} / q R_{0}\right)$
- No acceleration of ions' parallel velocity v : allows v-by- v solve
- Collisionless: good for superthermal ions
- No $\mu \nabla B$ force: "deeply-passing" approximation
- Axisymmetric, radially-thin simple-circular geometry
- $\mathrm{E} \times \mathrm{B}$ flows below poloidal sound speed

Normalizations: $v:\left.v_{t i}\right|_{\mathrm{pt}}, y: a, x: L_{x}, t: q R_{0} /\left.v_{\mathrm{t} i}\right|_{\mathrm{pt}}, f_{i}:\left.n_{i}\right|_{\mathrm{pt}} /\left.v_{\mathrm{ti}}\right|_{\mathrm{pt}}, D:\left.L_{x}^{2} v_{\mathrm{t} i}\right|_{\mathrm{pt}} / a B_{0}$
which captures the radially-global nature of the problem.

$$
\partial_{t} f_{i}+b_{\phi} v \partial_{y} f_{i}-b_{\phi} \delta v^{2}(\sin y) \partial_{x} f_{i}-\partial_{x}\left[D(x, y) \partial_{x} f_{i}\right]=0
$$

- Solve for $f_{i} \sim F_{0}$, "equilibrium" distribution

- Pedestal-SOL formulation in boundary conditions:
- Spatial variation of turbulent diffusivity
- $\delta \doteq q \rho_{i}| |_{\mathrm{pt}} / L_{x}$ a free parameter (may ≈ 1 in experiment)
- Invariant to rigid toroidal rotation $v_{\text {rig }}$
- Trivial conservation of a simplified toroidal momentum:

$$
\int \mathrm{d} v\left(v+v_{\text {rig }}\right) f_{i}
$$

An initial variable transform simplifies the equations.

 Transform to drift surface label$$
\bar{x} \doteq x-\delta v\left(\cos y-\cos y_{0}\right)
$$

to get a simple form for the equation

$$
b_{\phi} v \partial_{y} f_{i}=\partial_{\bar{x}}\left[D(x(\bar{x}, y), y) \partial_{\bar{x}} f_{i}\right],
$$

boundary conditions

$$
\begin{aligned}
f_{i}\left(\bar{x} \leq 0, y_{0}\right) & =f_{i}\left(\bar{x} \leq 0, y_{0}+2 \pi\right), \\
f_{i}\left(\bar{x}>0, y_{0}, b_{\phi} v>0\right) & =0 \\
f_{i}\left(\bar{x}>0, y_{0}+2 \pi, b_{\phi} v<0\right) & =0 \\
f_{i}(\bar{x} \rightarrow \infty, y) & \rightarrow 0 \\
f_{i}\left(\bar{x}=\bar{x}_{\ell}, y\right) & =f_{i 0}(v),
\end{aligned}
$$

and v-dependent surface-integrated flux (constant across $\bar{x}_{\ell} \leq \bar{x} \leq 0$):

$$
\Gamma(v) \doteq \oint \mathrm{d} \boldsymbol{S} \cdot \boldsymbol{\Gamma}=-\oint \mathrm{d} y\left(D \partial_{\bar{x}} f_{i}\right)(\bar{x}, y)
$$

In the bulk, away from the LCDS, f_{i} is constant along drift orbits.
In the bulk, meaning $\bar{x}<0,|\bar{x}| \sim O(1)$, decompose

$$
\bar{f}_{i}(\bar{x}) \doteq \frac{1}{2 \pi} \oint \mathrm{~d} y f_{i}, \quad \tilde{f}_{i}(\bar{x}, y) \doteq f_{i}-\bar{f}_{i},
$$

then our simple equation becomes

$$
b_{\phi} \vee \partial_{y} \tilde{f}_{i}=\partial_{\bar{x}}\left[D(\bar{x}, y) \partial_{\bar{x}}\left(\bar{f}_{i}+\tilde{f}_{i}\right)\right]
$$

- Since $\oint \mathrm{d} y \tilde{f}_{i}=0$, must have $\partial_{y} \tilde{f}_{i} \sim \tilde{f}_{i}$.
- On the bulk, $\partial_{\bar{x}} \sim O(1)$, so $\partial_{\bar{x}}\left(D \partial_{\bar{x}} \tilde{f}_{i}\right) \ll \partial_{y} \tilde{f}_{i}$.
- Neglect $\partial_{\bar{x}}\left(D \partial_{\bar{x}} \tilde{f}_{i}\right)$, then integrate $\oint \mathrm{d} y$ for the solvability constraint

$$
\begin{gathered}
0 \approx \oint \mathrm{~d} y \partial_{\bar{x}}\left[D(x(\bar{x}, y), y) \partial_{\bar{x}} \bar{f}_{i}\right]=\partial_{\bar{x}}\left(\bar{D} \partial_{\bar{x}} \bar{f}_{i}\right), \text { and } \Gamma \approx-\bar{D} \partial_{\bar{x}} \bar{f}_{i}, \text { where } \\
\bar{D}(\bar{x}) \doteq \oint \mathrm{d} y D(\bar{x}, y), \text { thus } \\
f_{i 0}-\bar{f}_{i}(\bar{x}=0)=-\int_{\bar{x}_{\ell}}^{0} \mathrm{~d} \bar{x} \partial_{\bar{x}} \bar{f}_{i} \approx \Gamma \int_{\bar{x}_{\ell}}^{0} \mathrm{~d} \bar{x} \bar{D}^{-1}
\end{gathered}
$$

In the layer, use local LCDS values to simplify.
Outside the "last closed drift orbit" (LCDS), meaning $\bar{x}>0, f_{i}=\int_{y_{0}}^{y} \mathrm{~d} y \partial_{y} f_{i}$ so $\tilde{f}_{i} \sim \bar{f}_{i}$, inconsistent with the bulk orderings.
So, the equation $b_{\phi} \vee \partial_{y} f_{i}=\partial_{\bar{x}}\left(D \partial_{\bar{x}} f_{i}\right)$ implies steep gradients $\partial_{\bar{x}} \sim O\left(D^{-1 / 2}\right)$, in the near-LCDS layer $|\bar{x}| \sim O\left(D^{1 / 2}\right)$.
Since $|\bar{x}| \ll 1$ in the layer, take $D(\bar{x}, y) \approx D(0, y)$, then use a y transform

$$
\begin{aligned}
\bar{y}(y) & \doteq \frac{1}{\bar{D}_{0}} \int_{y_{0}}^{y} \mathrm{~d} y^{\prime} D\left(0, y^{\prime}\right), \\
& \bar{D}_{0} \doteq \bar{D}(\bar{x}=0),
\end{aligned}
$$

switch $\bar{y} \rightarrow 1-\bar{y}$ for $v<0$, and define

$$
u(\bar{x}) \doteq\left(|v| / \bar{D}_{0}\right)^{1 / 2} \bar{x},
$$

then

$$
\left.\partial_{\bar{y}}\right|_{u} f_{i}=\left.\partial_{u}\right|_{\bar{y}} ^{2} f_{i}
$$

with left-hand matching condition:

$$
f_{i}(u \rightarrow-\infty, \bar{y}) \approx c_{0}+c_{1} u .
$$

Baldwin et al found $c_{0} / c_{1}=\zeta(1 / 2) / \sqrt{\pi} \approx-0.824$ [6].

Match the solutions to determine flux Γ and rotation $v_{\text {rig }}$. Match \bar{f}_{i} and its radial derivative for bulk $\bar{x} \rightarrow 0_{-}$and layer $u \rightarrow-\infty$:

$$
\begin{aligned}
& \bar{f}_{i}(\bar{x}=0) \\
&=c_{0}, \\
& \Gamma \approx-\left(\bar{D} \partial_{\bar{x}} \bar{f}_{i}\right)(\bar{x}=0) \\
&=-\left(|v| \bar{D}_{0}\right)^{1 / 2} c_{1}
\end{aligned}
$$

thus $\bar{f}_{i}(\bar{x}=0)=\left(-c_{0} / c_{1}\right) \Gamma /\left(|v| \bar{D}_{0}\right)^{1 / 2}$ and

$$
\Gamma(v) \approx \frac{f_{i 0}}{\int_{\bar{x}_{e}}^{0} \mathrm{~d} \overline{\mathrm{D}}^{-1}+\left(-c_{0} / c_{1}\right) /\left(|v| \bar{D}_{0}\right)^{1 / 2}}
$$

Γ implies a viscous momentum flux $v_{\text {rig }} \Gamma^{p}$, intrinsic momentum flux Π, and ion heat flux $\left(\Gamma^{p}+Q_{\|}\right)$for moments

$$
\Gamma^{p} \doteq \int \mathrm{~d} v \Gamma, \quad \Pi \doteq \int \mathrm{~d} v v \Gamma, \quad Q_{\|} \doteq \int \mathrm{d} v \frac{1}{2} v^{2} \Gamma .
$$

With applied torque τ^{N}, steady-state momentum conservation demands

$$
\tau^{N}=v_{\text {rig }}{ }^{p}+\Pi .
$$

In simple limits, we get simple dimensional formulas.
Assume $D^{1 / 2}, \delta \ll 1, D(x, y)=D_{x}(x) D_{y}(y)$, canonical Maxwellian $f_{i 0}$. Model predicts the dimensional intrinsic and viscous momentum fluxes:

$$
\begin{aligned}
& \Pi^{\text {int }} \approx 1.39\left(\bar{R}_{X}-\frac{1}{2} d_{\mathrm{c}}^{\text {eff }}\right) \frac{\left(\mu_{i} / 2\right) q R_{0}(\mathrm{~m}) Q_{i}(\mathrm{MW})}{Z_{i} B_{0}(\mathrm{~T}) L_{\phi}^{\text {eff }}(\mathrm{cm})} \mathrm{N} \cdot \mathrm{~m}, \\
& \Pi^{\mathrm{visc}} \approx 0.0139 \frac{\left(\mu_{i} / 2\right) R_{0}(\mathrm{~m}) Q_{i}(\mathrm{MW})}{T_{i} \mid \mathrm{pt}(\mathrm{keV})} v_{\varphi}(\mathrm{km} / \mathrm{s}) \mathrm{N} \cdot \mathrm{~m} .
\end{aligned}
$$

Dimensional momentum balance with applied torque τ,

$$
\tau=\Pi^{\mathrm{int}}+\Pi^{\mathrm{visc}}
$$

is easily solved for core-edge-boundary rotation

$$
\begin{aligned}
& v_{\varphi} \approx v_{\mathrm{int}}+71.9 \frac{T_{i} \mid{ }_{\mathrm{pt}}(\mathrm{keV}) \tau(\mathrm{N} \cdot \mathrm{~m})}{\left(\mu_{i} / 2\right) R_{0}(\mathrm{~m}) Q_{i}(\mathrm{MW})} \mathrm{km} / \mathrm{s}, \\
& v_{\text {int }} \approx 100\left(d_{\mathrm{c}}^{\text {eff }} / 2-\bar{R}_{X}\right) \frac{q T_{i} \mid \mathrm{pt}}{Z_{i} B_{0}(\mathrm{~T}) L_{\phi}^{\text {eff }}(\mathrm{cm})} \mathrm{km} / \mathrm{s} .
\end{aligned}
$$

As always, care is needed for theory-experiment comparison. In the formulas, μ_{i} is ion mass (in amu), $R_{0} \doteq\left(R_{\text {in }}+R_{\text {out }}\right) / 2$, and

$$
\bar{R}_{X} \doteq\left[2 R_{X}-\left(R_{\text {out }}+R_{\text {in }}\right)\right] /\left(R_{\text {out }}-R_{\text {in }}\right),
$$

with $R_{X}, R_{\text {in }}$, and $R_{\text {out }}$ the major radii of the X -point and inner- and outer-most points of the LCFS.

- Usually $d_{\mathrm{c}}^{\text {eff }} \approx d_{\mathrm{c}}$ for $d_{\mathrm{c}}(x) \doteq \frac{2}{D_{\mathrm{z}}} \oint \mathrm{d} y D \cos y, D_{\mathrm{z}}(x) \doteq \oint \mathrm{d} y D$.
- The effective decay length is defined for D with any x dependence:

$$
L_{\phi}^{\text {eff }} \doteq \int_{X_{\ell, \text { dim }}}^{0} \mathrm{~d} x_{\mathrm{dim}}\left[D_{z}(0) / D_{z}\left(x_{\mathrm{dim}}\right)\right],
$$

- The safety factor is really measuring orbit width, one best uses either

$$
q \approx q_{\text {eff }, B} \doteq \frac{B_{0}\left(R_{\text {out }}-R_{\text {in }}\right)}{2 B_{\mathrm{p}} R}, \text { or } q \approx q_{\text {eff }, l} \doteq 5 \frac{R_{\text {out }}-R_{\text {in }}}{2 R_{0}} \frac{B_{0}(\mathrm{~T}) \ell_{\mathrm{p}}(\mathrm{~m}) / 2 \pi}{l_{p}(\mathrm{MA})},
$$

- Torque τ refers to true torque: Include NTV torque and actual deposited NBI torque [4]. Exclude "intrinsic torque."
- Best radial point often just inside the pedestal top, or L-mode analog.
- Kludge for ion trapping: multiply Π^{int} and $v_{\text {int }}$ by $f_{\text {pass }}[4]$.

We can define a definite semi-integral and semi-derivative. For arbitrary function $h(0 \leq \bar{y} \leq 1)$, define:

$$
\begin{aligned}
& \left(\partial_{\bar{y} 0}^{-1 / 2} h\right)(\bar{y}) \doteq \int_{0}^{\bar{y}} \mathrm{~d} v \frac{h(v)}{\sqrt{\pi(\bar{y}-v)}}=\int_{0}^{\bar{y}} \mathrm{~d} \tau \frac{h(\bar{y}-\tau)}{\sqrt{\pi \tau}}, \\
& \left(\partial_{\bar{y} 0}^{+1 / 2} h\right)(\bar{y}) \doteq \partial_{\bar{y}} \partial_{\bar{y} 0}^{-1 / 2} h,
\end{aligned}
$$

The convenient integral

$$
\frac{1}{\pi} \int_{v}^{\bar{y}} \mathrm{~d} \bar{y}^{\prime} \frac{1}{\sqrt{\left(\bar{y}-\bar{y}^{\prime}\right)\left(\bar{y}^{\prime}-v\right)}}=1 .
$$

then implies that

$$
\partial_{\bar{y} 0}^{-1 / 2} \partial_{\bar{y} 0}^{-1 / 2} h=\int_{0}^{\bar{y}} \mathrm{~d} v h .
$$

One may similarly show that

$$
\partial_{\bar{y} 0}^{+1 / 2} \partial_{\overline{0} 0}^{+1 / 2} h(\bar{y}) \doteq \partial_{\bar{y}} h .
$$

These operations, and more general cases, are discussed in great detail by Oldham and Spanier, "The Fractional Calculus," Academic Press Inc.

Semi-integrals and semi-derivatives for periodic functions:
Expand arbitrary function $h(0 \leq \bar{y} \leq 1)$ in Fourier series:

$$
h(\bar{y})=\sum_{m} \hat{h}_{m} e^{2 \pi i m \bar{y}}, \tilde{h} \doteq \sum_{m \neq 0} \hat{h}_{m} e^{2 \pi i m \bar{y}}
$$

The derivative and zero-mean ("periodic") integral of \tilde{h} are

$$
\partial_{\bar{y}} \tilde{h}=\sum_{m} 2 \pi i m \hat{h}_{m} e^{2 \pi i m \bar{y}}, \int_{\mathrm{p}} \mathrm{~d} y \tilde{h} \doteq \sum_{m \neq 0} \hat{h}_{m} e^{2 \pi i m \bar{y}} / 2 \pi i m
$$

Define a "periodic semi-derivative" and "periodic semi-integral" as

$$
\partial_{\bar{y} \mathrm{p}}^{+1 / 2} \tilde{h}=\sum_{m} \sqrt{2 \pi i m} \hat{h}_{m} e^{2 \pi i m \bar{y}}, \quad \partial_{\bar{y} \mathrm{p}}^{-1 / 2} \tilde{h} \doteq \sum_{m \neq 0} \hat{h}_{m} e^{2 \pi i m \bar{y}} / \sqrt{2 \pi i m}
$$

We can also evaluate these in real space:

$$
\begin{aligned}
\partial_{\overline{y p}}^{-1 / 2} \tilde{h} & \doteq \int_{0}^{1} \mathrm{~d} \tau g(\tau) h_{\mathrm{ext}}(\bar{y}-\tau), \\
\partial_{\bar{y} p}^{+1 / 2} \tilde{h} & \doteq \partial_{\bar{y}} \partial_{\overline{y_{\bar{p}}}-1 / 2}, \\
g(\tau)=g_{\mathrm{f}}(\tau) & \doteq \sum_{m \neq 0} e^{2 \pi i m \tau} / \sqrt{2 \pi i m}, \text { or } \\
g(\tau)=g_{\mathrm{s}}(\tau) & \doteq 1 / \sqrt{\pi \tau}+\sum_{n=0}^{\infty} g_{\mathrm{s}, n} \tau^{n} .
\end{aligned}
$$

An alternative reformulation facilitates more detailed mathematical analysis.
Recast the exact kinetic equation with the layer \bar{y} and a new radial variable

$$
\begin{gathered}
\bar{u}(\bar{x}) \doteq\left(|v| \bar{D}_{0}\right)^{1 / 2} \int_{0}^{\bar{x}} \mathrm{~d} \bar{x}^{\prime} / \bar{D}\left(\bar{x}^{\prime}\right), \text { obtaining } \\
\partial_{\bar{y}} f_{i}-\partial_{\bar{u}}^{2} f_{i}=\partial_{\bar{u}}\left(\tilde{d} \partial_{\bar{u}} f_{i}\right)-\bar{d} \partial_{\bar{y}} f_{i}, \text { with } \\
\bar{d}(\bar{u}) \doteq\left[\bar{D}(\bar{u})-\bar{D}_{0}\right] / \bar{D}_{0}=\bar{D}(\bar{u}) / \bar{D}_{0}-1 \\
\tilde{d}(\bar{u}, \bar{y}) \doteq[D(\bar{u}, \bar{y}) / \bar{D}(\bar{u})] /\left[D(0, \bar{y}) / \bar{D}_{0}\right]-1,
\end{gathered}
$$

where $\bar{d}(0)=\tilde{d}(0, \bar{y})=0, \partial_{u} \bar{d},\left.\partial_{u}\right|_{\bar{y}} \tilde{d} \sim O\left(D^{1 / 2}\right)$, and $\int_{0}^{1} \mathrm{~d} \bar{y} \tilde{d}=0$.
Most boundary conditions unchanged:

$$
f_{i}(\bar{u} \leq 0, \bar{y}=0)=f_{i}(\bar{u} \leq 0, \bar{y}=1), f_{i}(\bar{u}>0, \bar{y}=0)=0, f_{i}(\bar{u} \rightarrow \infty, y) \rightarrow 0 .
$$ But at the core-edge boundary, require only $\left(\partial_{\bar{y}} f_{i}\right)\left(\bar{u}_{\ell}, \bar{y}\right)=0$. Set overall magnitude by setting $\Gamma=\Gamma_{0}$ for the exact flux

$$
\Gamma=-\left(|v| \bar{D}_{0}\right)^{1 / 2} \int_{0}^{1} \mathrm{~d} \bar{y}(1+\tilde{d}) \partial_{\bar{u}} f_{i} .
$$

Take asymptotic small- D limit of the reformulated problem.

To find f_{a}, a $D \ll 1$ approximation to f_{i}, we neglect $\bar{d}, \tilde{d} \sim O\left(D^{1 / 2}|\bar{u}|\right)$, obtaining

$$
\partial_{\bar{y}} f_{\mathrm{a}}-\partial_{\overline{\mathrm{U}}}^{2} f_{\mathrm{a}}=0 .
$$

Boundary conditions are unchanged, except now $\left(\partial_{\bar{y}} f_{\mathrm{a}}\right)(\bar{u} \rightarrow-\infty, \bar{y})=0$, and $\Gamma=\Gamma_{0}$ applies to

$$
\begin{aligned}
& -\Gamma /\left(|v| \bar{D}_{0}\right)^{1 / 2}=\int_{0}^{1} \mathrm{~d} \bar{y} \partial_{\bar{u}} f_{\mathrm{a}}=\partial_{\bar{u}} \bar{f}_{\mathrm{a}}, \\
& \text { where } \bar{f}_{\mathrm{a}} \doteq \int_{0}^{1} \mathrm{~d} \bar{y} f_{\mathrm{a}}, \quad \tilde{f}_{\mathrm{a}} \doteq f_{\mathrm{a}}-\bar{f}_{\mathrm{a}} .
\end{aligned}
$$

To calculate $f_{i 0} \approx \bar{f}_{\mathrm{a}}\left(\bar{u}_{\ell}\right)$ as a function of Γ_{0} :

$$
\bar{f}_{\mathrm{a}}\left(\bar{u}_{\ell}\right)=-\int_{\bar{u}_{\ell}}^{0} \mathrm{~d} \bar{u} \partial_{\bar{u}} \bar{f}_{\mathrm{a}}+\bar{f}_{\mathrm{a}}(0)=\frac{\Gamma\left|\bar{u}_{\ell}\right|}{\left(|v| \bar{D}_{0}\right)^{1 / 2}}+\bar{f}_{\mathrm{a}}(0),
$$

we need "only" find $\bar{f}_{\mathrm{a}}(0, \bar{y})$. But this requires to solve separately for the edge $f_{\mathrm{a}}(\bar{u} \leq 0)$, SOL $f_{\mathrm{a}}(\bar{u}>0)$, and then enforce continuity at $\bar{u}=0$.

A basic Green's function form facilitates our solution.

If we knew $f_{\mathrm{a}}(\bar{u} \leq 0, \bar{y}=1)$, our solution would be

$$
f_{\mathrm{a}}(\bar{u}, \bar{y})=\int_{-\infty}^{0} \mathrm{~d} \xi f_{\mathrm{a}}(\xi, \bar{y}=1) G(\bar{u}-\xi, \bar{y}),
$$

with standard diffusion Green's function (with general arguments \breve{u}, \breve{y})

$$
G(\breve{u}, \breve{y}) \doteq \exp \left(-\breve{u}^{2} / 4 \breve{y}\right) / \sqrt{4 \pi \breve{y}} .
$$

Since $G(\breve{u}, \breve{y}>0)$ is smooth, so is $f_{\mathrm{a}}(\bar{u}, \bar{y}>0)$, thus also $f_{\mathrm{a}}(\bar{u}, \bar{y}=0)$, except right at $\bar{u}=\bar{y}=0$.

Since $f_{\mathrm{a}}(\bar{u}, 1)$ is smooth, we may Taylor expand it about $\bar{u}=0$ and substitute in GF formula to get
from which we may evaluate

$$
f_{\mathrm{a}}(\bar{u}=0, \bar{y})=\sum_{n=0}^{\infty} b_{n} \bar{y}^{n / 2}
$$

$$
f_{\mathrm{a}}(\bar{u}=0, \bar{y}=0)=\frac{1}{2} f_{\mathrm{a}}(\bar{u}=0, \bar{y}=1) .
$$

The edge solution is captured by a semidifferential relation.

For $\bar{u} \leq 0$, expand
in our differential equation

$$
f_{\mathrm{a}}(\bar{u} \leq 0, \bar{y})=\bar{f}_{\mathrm{a}}(\bar{u})+\sum_{m \neq 0} \hat{f}_{m}(\bar{u}) e^{2 \pi i m \bar{y}}
$$

then trivially solve for

$$
\partial_{\bar{y}} f_{\mathrm{a}}-\partial_{\overline{\mathrm{u}}}^{2} f_{\mathrm{a}}=0,
$$

$$
\begin{aligned}
\bar{f}_{\mathrm{a}}(\bar{u} \leq 0) & =c_{0}+c_{1} \bar{u} \\
\tilde{f}_{\mathrm{a}}(\bar{u} \leq 0, \bar{y}) & =\sum_{m \neq 0} \hat{f}_{m c} e^{\sqrt{2 \pi i m \bar{u}}} e^{2 \pi i m \bar{y}},
\end{aligned}
$$

with unknown constants $c_{0}, c_{1}, \hat{f}_{m c}$.
By $\sqrt{2 \pi i m}$, we always intend the branch with positive real part, $\propto 1 \pm i$.
Recalling our definitions, this implies the semi-differential relationship

$$
\partial_{\bar{u}} \tilde{f}_{\mathrm{a}}(\bar{u} \leq 0, \bar{y})=\partial_{\bar{y} \mathrm{p}}^{+1 / 2} \tilde{f}_{\mathrm{a}}(\bar{u} \leq 0, \bar{y}) .
$$

The SOL solution follows a different semidifferential relation.
For $\bar{u}>0$, use GF form for f_{a}, along with its \bar{u} partial:

$$
\left(\partial_{\bar{u}} f_{\mathrm{a}}\right)(\bar{u}, \bar{y})=\frac{-1}{2 \bar{y}} \int_{-\infty}^{0} \mathrm{~d} \xi f_{\mathrm{a}}(\xi, 1)(\bar{u}-\xi) G(\bar{u}-\xi, \bar{y})
$$

If we recall the definite semi-integral,

$$
\left(\partial_{\bar{y} 0}^{-1 / 2} h\right)(\bar{y}) \doteq \int_{0}^{\bar{y}} \mathrm{~d} v \frac{h(v)}{\sqrt{\pi(\bar{y}-v)}}=\int_{0}^{\bar{y}} \mathrm{~d} \tau \frac{h(\bar{y}-\tau)}{\sqrt{\pi \tau}}
$$

then we can carry out the integral to get

$$
\begin{gathered}
\partial_{\bar{y} 0}^{-1 / 2} \partial_{\bar{u}} f_{\mathrm{a}}=-\int_{-\infty}^{0} \mathrm{~d} \xi f_{\mathrm{a}}(\xi, 1) G(\bar{u}-\xi, \bar{y}) \operatorname{sign}(\bar{u}-\xi), \\
\left(\partial_{\bar{y} 0}^{-1 / 2} \partial_{\bar{u}} f_{\mathrm{a}}\right)(\bar{u} \geq 0, \bar{y})=-f_{\mathrm{a}}(\bar{u} \geq 0, \bar{y})
\end{gathered}
$$

Enforce continuity of f_{a} and $\partial_{\bar{u}} f_{\mathrm{a}}$ at $\bar{u}=0$ to find self-consistent solution.
Use $f_{\mathrm{a}}\left(0_{-}, \bar{y}>0\right)=f_{\mathrm{a}}\left(0_{+}, \bar{y}\right)$ in $\left(\partial_{\bar{y} 0}^{-1 / 2} \partial_{\bar{u}} f_{\mathrm{a}}\right)\left(0_{-}, \bar{y}>0\right)=\left(\partial_{\bar{y} 0}^{-1 / 2} \partial_{\bar{u}} f_{\mathrm{a}}\right)\left(0_{+}, \bar{y}\right)$:

$$
\partial_{\overline{\mathrm{y}} 0}^{-1 / 2} \partial_{\overline{\mathrm{y}} \mathrm{p}}^{+1 / 2} \tilde{\mathrm{f}}_{\mathrm{a}}+2 c_{1} \sqrt{\bar{y} / \pi}=-f_{\mathrm{a}},
$$

with c_{1} already known. Rearrange, using $\partial_{\bar{y} 0}^{-1 / 2} \partial_{\bar{y} 0}^{+1 / 2} \tilde{f}_{\mathrm{a}}=\tilde{f}_{\mathrm{a}}$:

$$
2 f_{\mathrm{a}}-c_{0}+2 c_{1} \sqrt{\bar{y} / \pi}=\partial_{\bar{y} 0}^{-1 / 2}\left(\partial_{\bar{y} 0}^{+1 / 2}-\partial_{\bar{y} \mathrm{p}}^{+1 / 2}\right) \tilde{f}_{\mathrm{a}} .
$$

One may derive an integral form for the operator on the RHS:

$$
\begin{gathered}
\partial_{\bar{y} 0}^{-1 / 2}\left(\partial_{\bar{y} 0}^{+1 / 2}-\partial_{\bar{y} \mathrm{p}}^{+1 / 2}\right) \tilde{h}=\int_{0}^{1} \mathrm{~d} \tau g_{\Delta}(\bar{y}, \tau) h(1-\tau), \\
g_{\Delta}(\bar{y}, \tau)=\frac{\sqrt{\bar{y}} / \pi}{\sqrt{\tau}(\bar{y}+\tau)}+\frac{\sqrt{\bar{y}}}{\pi} \sum_{n=0}^{\infty}(-1)^{n} \zeta\left(n+\frac{3}{2}, \tau+1\right) \bar{y}^{n}-1 .
\end{gathered}
$$

Define $f_{\mathrm{a}, \mathrm{sh}}(\bar{y}) \doteq f_{\mathrm{a}}(0, \bar{y})-c_{0} / 2=\tilde{f}_{\mathrm{a}}+c_{0} / 2$, then we have

$$
2 f_{\mathrm{a}, \mathrm{sh}}+2 c_{1} \sqrt{\bar{y} / \pi}=\int_{0}^{1} \mathrm{~d} \tau g_{\Delta}(\bar{y}, \tau) f_{\mathrm{a}, \mathrm{sh}}(1-\tau) .
$$

Iteration on the semi-differential operator is convergent.
Consider the problem

$$
h(0<\bar{y} \leq 1)-h^{(0)}(\bar{y})=\frac{1}{2} \int_{0}^{1} \mathrm{~d} \tau g_{\Delta}(\bar{y}, \tau) h(1-\tau),
$$

with specified function $h^{(0)}$ satisfying $\left|h^{(0)}\right|(\bar{y}) \leq b_{0}$.
Define

$$
h^{(q+1)}(\bar{y})=\frac{1}{2} \int_{0}^{1} \mathrm{~d} \tau g_{\Delta}(\bar{y}, \tau) h^{(q)}(1-\tau),
$$

then one may bound

$$
\left|h^{(q \geq 1)}\right|(\bar{y}) \leq b_{q}(1-\sqrt{\bar{y}} / 4), \text { for } b_{q \geq 1} \doteq b_{0} r^{q-1},
$$

for positive constant $r<0.82$. This implies that h may be expressed as a convergent sum

$$
h=\sum_{q=0}^{\infty} h^{(q)} \text {, which is bounded by } \sum_{q=0}^{\infty} b_{q}=\frac{2-r}{1-r} b_{0}<6.46 b_{0} .
$$

Iterative approximations for $f_{\mathrm{a}}(0, \bar{y})$ converge rapidly.

Use the iterative scheme with $h=f_{\mathrm{a}, \text { sh }}$ and $h^{(0)}=-c_{1} \sqrt{\bar{y} / \pi}$. Exact results: $c_{0} / c_{1}=\zeta(1 / 2) / \sqrt{\pi} \approx-0.823917, f_{\mathrm{a}}\left(0_{+}\right)=f_{\mathrm{a}}(1) / 2$.

Define: $c_{0} \approx c_{0}^{(Q)} \doteq \sum_{q=0}^{Q} 2 \int_{0}^{1} \mathrm{~d} \bar{y} f_{\mathrm{a}, \mathrm{sh}}^{(q)}$

$$
f_{\mathrm{a}}^{(Q)} \doteq \sum_{q=0}^{Q} f_{\mathrm{a}, \mathrm{sh}}^{(q)}+c_{0}^{(Q)} / 2 .
$$

Convergence is rapid:

$$
\begin{aligned}
& f_{\mathrm{a}}^{(0)}: c_{0}^{(0)} \approx-0.752 c_{1}, \\
& \quad f_{\mathrm{a}}^{(0)}\left(\bar{y} \rightarrow 0_{+}\right) / f_{\mathrm{a}}^{(0)}(\bar{y}=1)=2 / 5 .
\end{aligned}
$$

$f_{\mathrm{a}}^{(1)}: c_{0}^{(1)} \approx-0.829249 c_{1}(<1 \%$ off $)$,

$$
f_{\mathrm{a}}^{(1)}\left(\bar{y} \rightarrow 0_{+}\right) / f_{\mathrm{a}}^{(1)}(\bar{y}=1) \approx 0.506
$$

$f_{\mathrm{a}}^{(2)}: c_{0}^{(2)} \approx-0.82356 c_{1}(<0.05 \%$ off $)$,
$f_{\mathrm{a}}^{(2)}\left(0_{+}\right) / f_{\mathrm{a}}^{(2)}(1) \approx 0.49964(<0.1 \% \text { off })_{-1}$

The asymptotic solution reproduces the boundary-layer solution, and can be shown to be $O\left(D^{1 / 2}\right)$ accurate.
Substitute $\quad \bar{f}_{a}(0)=c_{0}=\left(c_{0} / c_{1}\right) c_{1}=-\Gamma\left(c_{0} / c_{1}\right) /\left(|v| \bar{D}_{0}\right)^{1 / 2}$

$$
\left|\bar{u}_{\ell}\right|=\left(|v| \bar{D}_{0}\right)^{1 / 2} \int_{\bar{x}_{\ell}}^{0} \mathrm{~d} \bar{x} \bar{D}^{-1}(\bar{x})
$$

into $\bar{f}_{\mathrm{a}}\left(\bar{u}_{\ell}\right)$ equation to get

$$
\bar{f}_{\mathrm{a}}\left(\bar{u}_{\ell}\right)=\Gamma\left[\int_{\bar{x}_{\ell}}^{0} \mathrm{~d} \bar{x} \bar{D}^{-1}+\left(-c_{0} / c_{1}\right) /\left(|v| \bar{D}_{0}\right)^{1 / 2}\right],
$$

equivalent to boundary layer results for $f_{i 0}=\bar{f}_{\mathrm{a}}\left(\bar{u}_{\ell}\right)$.
We were then able to demonstrate $D^{1 / 2}$ convergence as follows:

- Define $f_{\Delta} \doteq f_{i}-f_{\mathrm{a}}$, which solves (exact eqn) - (asymptotic eqn).
- Solve for its leading-order portion f_{δ}, using similar methods as here.
- Eval $\left|f_{i}\left(\bar{u}_{\ell}\right)-\bar{f}_{\mathrm{a}}\left(\bar{u}_{\ell}\right)\right|$ with $f_{\Delta} \rightarrow f_{\delta}$, it's bounded by $O\left(D^{1}\right)$ constant.
- Show that one may bound the ratio of (error after f_{δ} solution) over (error after f_{a} solution) by a constant of $O\left(D^{1 / 2}\right)$.

Summary

- Drift orbits beat with spatial variation of turbulent D causing unequal orbit-averaged diffusivity for co- and counter- ions.
- Assuming $\left(D^{\text {dim }} / L_{x}^{2}\right) \ll\left(v_{t i} \mid \mathrm{pt} / q R_{0}\right)$, we may approximately solve for the resulting rotation, even for a $D(x, y)$ with arbitrary spatial dependence.
- A simple boundary-layer method produces a quick, intuitive answer.
- This method may be applied to more general problems, e.g. self-consistent rotation with short-charge-exchange-length neutrals
- Simple limits of this answer give relatively convenient dimensional formulas for rotation at the core-edge boundary.
- As always, care is needed when using idealized theory to model experiment.
- A more detailed calculation allows us to verify the boundary layer answer and its accuracy to $O\left(D^{1 / 2}\right)$.
- This approach also produces concrete approximate forms for the strong SOL and near-LCFS flows.

Cited works

國 Stoltzfus－Dueck T 2012 Phys．Rev．Lett． 108065002
回 Stoltzfus－Dueck T，Karpushov A N，Sauter O，Duval B P，Labit B，Reimerdes H，Vijvers W A J，Camenen Y and the TCV Team 2015 Phys．Rev．Lett． 114245001
囯 Boedo J A，deGrassie J S，Grierson B，Stoltzfus－Dueck T， Battaglia D J，Rudakov D L，Belli E A，Groebner R J， Hollmann E，Lasnier C，Solomon W M，Unterberg E A， Watkins J and DIII－D Team 2016 Phys．Plasmas 23092506

R Ashourvan A，Grierson B A，Battaglia D J，Haskey S R and Stoltzfus－Dueck T 2018 Phys．Plasmas 25056114

R Luda T et al． 2021 Nucl．Fusion 61126048
國 Baldwin D E，Cordey J G and Watson C J H 1972 Nucl．Fusion 12 307－314

