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Overview and Context

» Rotation protects against resistive-wall modes, which can cause
disruptions. NBI won't drive strong rotation in ITER or an FPP.

» Luckily, even without applied torque, the edge usually rotates co-current.

» The modulated-transport model explains this rotation with an interaction
of ion drift orbits with rapid spatial variation of turbulent viscosity [1].
> So far, it's been tested on TCV [2], DIII-D [3, 4], and ASDEX-Upgrade
[5], in a wide variety of conditions.
» However, the model assumed that turbulent viscosity decayed
exponentially in the radial direction—want to relax this assumption.

» In this new work, we let the turbulent viscosity depend on space in an
axisymmetric but otherwise arbitrary way.

» To do this, we assume normalized viscosity is weak, roughly: pedestal-top
ion transit time much shorter than transport across the pedestal

» The result is more flexible and the calculation is technically much easier.

> We test the simplified calculation and bound its error using a rigorous (but
much more challenging) semi-differential operator based calculation.
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Outline

Experimental background and basic model

Simple boundary-layer calculation

>
>
» Application to rotation: simple formulas for experimental use
» Semi-differential operators

>

Sketch of technical solution using semi-differential operators
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Experimentally, H-mode plasmas rotate spontaneously,

without external torque.
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» Co-current, especially in the edge.
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> vy /i ~ O(10™) at the pedestal top.

» Edge rotation proportional to T or VT?
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» Spin-up at L—H transition.
> Roughly proportional to W/I,.
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Differential transport can be caused by drift orbits’
interaction with the diffusivity's spatial variation.
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Simple Boundary Layer Model and analysis
Rotation application

We begin with a deceptively simple transport model,
Oifi + by va, f; — b¢5v2(siny)8xf,- — dx[D(x,y)dxfi] =0

- . pi Ly 1 a vg/a
Gyrokinetic equation=-average over turbulence= [ 23 R vi/aRe <& 1

» Turbulent D=—-purely diffusive turbulence, “null hypothesis”
» arbitrary x,y dependence, except D >0
» assumed small D <« 1: central ordering of this work

> dimensionally, (D9™/12) < (vi|pt/qRo)

» No acceleration of ions’ parallel velocity v: allows v-by-v solve
» Collisionless: good for superthermal ions

» No uVB force: “deeply-passing” approximation

» Axisymmetric, radially-thin simple-circular geometry

» E x B flows below poloidal sound speed

Normalizations: v:vi|p, y:a, x:Lx, t:qRo/Weilpt, fiinilpe/ iilpt, D:Livt,-|pt/aBo
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Simple Boundary Layer Model and analysis
Rotation application

which captures the radially-global nature of the problem.

Oef; + by vy f; — by Sv2(siny)dxf; — dx[D(x, y)dxf;] = 0

Al
P 27T
—1 —
fi—fio |periodic fi—0
; ; >
» Solve for f; ~ Fg, “equilibrium” distribution 0 v>0:f;=0

>
>
>

v

necessary to resolve global problem structiure

integrated over u

resulting f; not symmetric in parallel velocity v

or poloidal angle y

Pedestal-SOL formulation in boundary conditions:
Spatial variation of turbulent diffusivity

0 = qpijlpt/Lx a free parameter (may ~ 1 in experiment)

Invariant to rigid toroidal rotation v,
Trivial conservation of a simplified toroidal momentum:
Jdv (v + viig) fi
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Simple Boundary Layer Model and analysis
Rotation application

An initial variable transform simplifies the equations.
Transform to drift surface label
X =x—0v(cosy —cosyp)
to get a simple form for the equation
byvdy f; = dz[D(x(x,y),y)f],
boundary conditions
fi(x <0,y0) = (x<0 yo+2m),
fi(x > 0,y0,byv > 0) =
fi(x>0,y0+2m,byv <0) =
fi(X = o0,y) —
)= fo( ):

and v-dependent surface-integrated flux (constant across X, < x < 0):

V)= $45-T = fdy (D3:A)(%.).

fi(x =X,y
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Simple Boundary Layer Model and analysis
Rotation application

In the bulk, away from the LCDS, f; is constant along drift
orbits.

In the bulk, meaning X <0, \)‘(| O(1), decompose

= favh Fx=6-F
then our simple equatlon becomes
byva, f; = 0z[D(X,y)dx(fi + )]
» Since fdyf; =0, must have 8yf,- ~ fi.
> On the bulk, dx ~ O(1), so dx(Ddxf) < 9, f;.
> Neglect dz(Ddxf), then integrate §dy for the solvability constraint

Nyfdya [D(X(%,y),y)9<F] = 9(DoxF), and T ~ —DoxF,, where
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Simple Boundary Layer Model and analysis
Rotation application

In the layer, use local LCDS values to simplify.

Outside the “last closed drift orbit” (LCDS), meaning X >0, f; = [ dy 9, f;
so f; ~ f;, inconsistent with the bulk orderings.

So, the equation byvd, f; = dx(Ddxf;) implies steep gradients

dz ~ O(D~1/2), in the near-LCDS layer |%| ~ O(D/?).

Since |x| < 1 in the layer, take D(x,y) ~ D(0,y), then use a y transform

y
o)== [/ Do.y),

0 /Yo

Do = D(x =0),
switch y — 1 —y for v <0, and define

u(x) = (Jv|/Do)*?x, S
then 3 )
Y’ufi = au|yfi

with left-hand matching condition:
f;'(U — _007)7) ~ C0+ clu.
Baldwin et al found co/c1 = §(1/2)/\/7 ~ —0.824 [6].
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Simple Boundary Layer Model and analysis
Rotation application

Match the solutions to determine flux ' and rotation vg.

Match f; and its radial derivative for bulk X — 0_ and layer u — —oo:

fi(x=0) = o,
[~ —(DadsF)(x = 0) = —(|v|Do)?c,
thus f;(Xx = 0) = (—co/c1) T /(|v|Do)*/? and

N fio
)= J2 dx D=1+ (—co/c1) /(|v|Do)V/2

I" implies a viscous momentum flux Viigl P, intrinsic momentum flux M, and
ion heat flux (P + Q) for moments

1
= favr, n= [anr, Q= [av .

With applied torque tV, steady-state momentum conservation demands

TV = v TP+ 1.
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Simple Boundary Layer Model and analysis
Rotation application

In simple limits, we get simple dimensional formulas.
Assume D'/2 § < 1, D(x,y) = Dx(x)Dy(y), canonical Maxwellian f;.
Model predicts the dimensional intrinsic and viscous momentum fluxes:
2)gR MW
I—Ilnt ~1. 39(R o 7dgtf) (“l/ )q 0( )ffca/( )
2 Z;By(T )Le (cm)

DRI,

N-m,

MYise ~ 0.0139

Dimensional momentum balance with applied torque T,
T= I—lint + I—Ivisc
is easily solved for core-edge-boundary rotation
Tilpi(keV)7(N-m)
(1i/2)Ro(m) Q;(MW)

5\ Tilp(keV)
ine ~ 100(dS™ /2 — R r
vint ~ 100(d™/ X)Z,-BO(T)Lg,ff(cm)

Vo R Vine+71.9 km/s,

km/s.
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Simple Boundary Layer Model and analysis
Rotation application

As always, care is needed for theory-experiment comparison.
In the formulas, p; is ion mass (in amu), Ry = (Rin + Rout)/2, and

Rx = [2Rx — (Rout + Rin)]/(Rout — Rin),
with Rx, Ry, and Ryy the major radii of the X-point and inner- and
outer-most points of the LCFS.

» Usually d¢f ~ d, for d.(x) = D%fdyDcosy, D,(x) = ¢dyD.
» The effective decay length is defined for D with any x dependence:
0
L= [ dram [0,(0)/ D)
X

,dim

» The safety factor is really measuring orbit width, one best uses either
. BO(Rout - R ) . . Rout— Rin BO(T) Ep(m)/277:
~ = = ~ = 5
q qeff,B 2BpR I or q qeff,l 2R0 Ip(MA) )
» Torque T refers to true torque: Include NTV torque and actual
deposited NBI torque [4]. Exclude “intrinsic torque.”

> Best radial point often just inside the pedestal top, or L-mode analog.

» Kludge for ion trapping: multiply M™ and vin by foass [4].
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Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

We can define a definite semi-integral and semi-derivative.

For arbitrary function h(0 < y < 1), define:

(950 A) /dm/

(a+1/2 )( ) a a_ 1/2 h,

The convenient integral l/y dy’ 1 =
T V(=¥ —v)

then implies that 8_ 1/25 1/2h / dv h.

One may similarly show that 8+1/28+1/2 h(y) = dyh.

These operations, and more general cases, are discussed in great detail by
Oldham and Spanier, “The Fractional Calculus,” Academic Press Inc.
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Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

Semi-integrals and semi-derivatives for periodic functions:
Expand arbitrary function h(0 < y < 1) in Fourier series:
— :Zijlmemrimy’ }"’7 Z h e27171my
m
The derivative and zero-mean (“periodic”) |ntegra| of h are
dyh= Z27rim hme?™imy /dyh = Z hme?™ ™Y /21im
m

m#0
Define a “periodic semi-derivative” and “periodic semi-integral” as

I 2h= Z\/27r/ hme?m7 9 12 h= ¥ hye™ ™ [/25im

m#0
We can also evaluate these in real space: 3 g
_1/2h / dfg eXt(}/ T) 2f
f L L ) T |
g(’L')— - Z e2mm7:/\/ﬁ or ) 0.2 - 06 0.8 0
m#0
g(7) =g ( )—1/W+ ng,,r or
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Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

An alternative reformulation facilitates more detailed
mathematical analysis.

Recast the exact kinetic equation with the layer y and a new radial variable

A(x) = (|v|Do) 2 / dx' / D(%'), obtaining
0
ayfi — 8§f, = ag(gagf;) — Ja)-,f,', with

d(a@) = [D(&@) — Do)/ Do = D(@)/ Do — 1,
d(a,y) = [D(a,y)/D(a@)]/[D(0,7)/Do] - 1,
where d(0) = d(0,7) =0, 9,d,du|yd ~ O(D'/?), and [, dyd = 0.
Most boundary conditions unchanged:

fi(i <0,y =0)=f(a<0,y=1), fi(d>0,y=0)=0, fi(i —oc0,y) 0.
But at the core-edge boundary, require only (9;f;)(i,y) = 0. Set overall
magnitude by setting [ = [y for the exact flux

M= —(|v|Do) 1/2/ dy (1+ d)sf:.
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Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

Take asymptotic small-D limit of the reformulated problem.

To find £, a D < 1 approximation to f;, we neglect d,d ~ O(D/?|a|),

obtainin
& dyf,— 92f, = 0.

Boundary conditions are unchanged, except now (dyf,)(& — —eo,y) =0,

and [ =T applies to _
—r/(Iv| Do) = / dy 9af, = aF,

where f—/ dyfy, fo="f,—f,.

To calculate fiy ~ (@) as a function of I'y:

f, ° 7 ra _
@(f’e)z—/_ didgfy + £(0) = ||
ue

(vDoy2 TR0

we need “only” find £,(0,7). But this requires to solve separately for the
edge f,(7 <0), SOL f,(@ > 0), and then enforce continuity at & = 0.
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Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

A basic Green's function form facilitates our solution.

If we knew £,(7 <0,y = 1), our solution would be
0

6a.7) = [ dERET=1)6(a-¢.9)

with standard diffusion Green's function (with general arguments i, y)

G(i,y) = exp(—i*/47)/\/Amy.

Since G(i,y > 0) is smooth, so is f,(a,y > 0), thus also f,(7,y =0),
except right at =y =0.

Since f,(&,1) is smooth, we may Taylor expand it about & =0 and
substitute in GF formula to get

fhW(@d=0,y) = Z bn—n/Z’
from which we may evaluate n=0

1
fa(ﬁ:O,y:O):Eﬁl(U:O,y:l).
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Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

The edge solution is captured by a semidifferential relation.

For & <0, expand

A(T<0,7)=FR(0)+ Y fm()>™
in our differential equation m#0

then trivially solve for

ohi
—~~
<
IN

0): o—i—
f:l _

V2mimi 27'cim)7
;

EI
|/\

m;ﬁO
with unknown constants cp, ¢1, fme.
By v2mim, we always intend the branch with positive real part, o< 1+1.

Recalling our definitions, this implies the semi-differential relationship
dafi(G<0,7) =95 ?R(3<0,7).
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Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

The SOL solution follows a different semidifferential relation.

For & > 0, use GF form for f,, along with its & partial:
@:f)(8.9) = 57 [ dEAED@E-E)6(E-E.5)

If we recall the definite semi-integral,

/%) / dv / e’
_)/ U

then we can carry out the integral to get

90! 0gt, = —/idé f(E,1)G(a—¢&,7)sign(d— &),
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Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

Enforce continuity of f, and dzfy at @ =0 to find
self-consistent solution.
Use £(0_,7 > 0) = f(01.7) in (9;5/°9a£)(0-.7 > 0) = (350" 0s£) (0+.7):

e e S 1RVA L Y

with ¢; already known. Rearrange, using 8__1/28“/2@ =f:

2f, — o+ 2c1/7 /7 = 5028557 — 91 E.
One may derive an integral form for the operator on the RHS:
27 — 912 = / dtga (7, 7)h(1— 1),

gA()ZT) = f\?;/—fr f Z

Define f,(7) = £(0,7) — co/2 = f, + co/2, then we have

1
2, +2c11/7 /7 = /0 dtga(7,7)fa(1—1).

3
n—l—E ,T+1)y"—1.

Stoltzfus-Dueck and Brzozowski, 111 Transport-driven Toroidal Rotation: General D (21)



Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

lteration on the semi-differential operator is convergent.
Consider the problem

W0 <7< 1)~ HOF) = [ araa(z (1)

with specified function h(®) satisfying |h(9)|(7) < bo.
Define

1
KO () =2 [ dega(s, DHO( 1),
0
then one may bound

[HD1(7) < by(1—/7/4), for bg=1 = bor® ",

for positive constant r < 0.82. This implies that h may be expressed as a
convergent sum

oo (o] 2 _
h='Y" h9), which is bounded by ¥ by = S bo < 6.46h.
4=0 4=0 1—r

Stoltzfus-Dueck and Brzozowski, 111 Transport-driven Toroidal Rotation: General D (22)



Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

lterative approximations for £,(0,¥) converge rapidly.

Use the iterative scheme with h = f, ¢, and h(0) = —c1y\/ /.
Exact results: ¢p/c1 = §(1/2)/v/7 ~ —0.823917, £,(04) = f,(1)/2.

Define: ¢p ~ C(Q) = Z 2f0 ash
f(Q) Zq Oash+CO /2

Convergence is rapid:

ﬁl(O) : céo) —0. 752c1, o
f(O)(y_>0 )/f ( _1)_2/5 1.0+ 2
£ D~ —0.829249¢; (<1% off), % 0@
D5 5 0,)/£0(7 = 1) ~ 0.506. R TR
£2: P ~ —0.82356¢; (<0.05% off), s 100 (f”f2")
(D0,)/62(1) ~ 040968 (<01% off),
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Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

The asymptotic solution reproduces the boundary-layer
solution, and can be shown to be O(D'/?) accurate.
Substitute  £(0) = co = (co/c1)c1 = —T(co/c1) /(|| Do)*/?
5 = (V100 ? [ a5 (5)
into f,(i;) equation to get .

fu(dg) =T [/;df(D_l +(—co/c1)/(|v|Do)*?],

equivalent to boundary layer results for fig = f,().

We were then able to demonstrate D'/2 convergence as follows:
» Define fa = f; — f,, which solves (exact eqn) - (asymptotic eqn).
» Solve for its leading-order portion fg, using similar methods as here.
> Eval |fi(@;) — fu(&¢)| with fa — f5, it's bounded by O(D?!) constant.
» Show that one may bound the ratio of (error after f5 solution) over
(error after f, solution) by a constant of O(D/?).
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Semi-differential operators
Mathematically Detailed Sketch of rigorous solution

Summary

>

>

Drift orbits beat with spatial variation of turbulent D causing unequal
orbit-averaged diffusivity for co- and counter- ions.
Assuming (D™ /[2) < (w|pt/qRo), we may approximately solve for the
resulting rotation, even for a D(x,y) with arbitrary spatial dependence.
A simple boundary-layer method produces a quick, intuitive answer.

» This method may be applied to more general problems,

e.g. self-consistent rotation with short-charge-exchange-length neutrals
Simple limits of this answer give relatively convenient dimensional formulas
for rotation at the core-edge boundary.

> As always, care is needed when using idealized theory to model
experiment.
A more detailed calculation allows us to verify the boundary layer answer
and its accuracy to O(D/?).

» This approach also produces concrete approximate forms for the strong
SOL and near-LCFS flows.
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Semi-differential operators

Mathematically Detailed Sketch of rigorous solution
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