Pedestal turbulence in AUG and JET from a global gyrokinetic perspective

Leonhard Leppin<sup>1</sup>, Tobias Görler<sup>1</sup>, Marco Cavedon<sup>2</sup>, Mike Dunne<sup>1</sup>, Elisabeth Wolfrum<sup>1</sup>, S. Saarelma<sup>3</sup>, L. Frassinetti<sup>4</sup>, J. Hobirk<sup>1</sup>, Frank Jenko<sup>1</sup>, ASDEX Upgrade Team<sup>5</sup> and JET Contributors<sup>6</sup>

<sup>1</sup>Max Planck Institute for Plasma Physics, Garching b. München, Germany <sup>2</sup>Dept. of Physics "G. Occhialini", University of Milano-Bicocca, Milan, Italy <sup>3</sup>CCFE, Culham Science Center, Abingdon OX14 3DB, United Kingdom of Great Britain and Northern Ireland <sup>4</sup>Division of Fusion Plasma Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden <sup>5</sup>See author list of U. Stroth et al. 2022 Nucl. Fusion 62 042006 <sup>6</sup>See Mailloux et al 2022 (https://doi.org/10.1088/1741-4326/ac47b4) for the JET Contributors

> Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Veves and opnions expressed are however those of the author(s) only and to not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.



MAX-PLANCK-INS

FÜR PLASMAPH

ROfusion

# **Overview**



· 10<sup>2</sup>

0

 $-10^{2}$ 

 $-1.5 \times 10^{-1}$ 



#### Goal: Identify dominant turbulence mechanisms & how they change across pedestal



#### Outline

#### Part I: Upgrade of global, electromagnetic GENE

#### Part II & III: Turbulence characterization in pedestals of AUG & JET





# **Types of simulations**

All presented simulations:

- gyrokinetic
- gradient-driven
- δf
- electromagnetic ( $\phi_1, A_{\parallel,1}$  but no  $B_{\parallel,1}$ )
- collisions
- true m<sub>e</sub>/m<sub>i</sub>

#### **Depending on aim:** • local, linear $\rightarrow$ instability characterization

- local, nonlinear  $\rightarrow$  electron-scale turbulence/fluxes
- global, nonlinear  $\rightarrow$  ion-scale turbulence/fluxes



# Part I: Upgrade of global, electromagnetic GENE



### **Gyrokinetic equation**

#### Vlasov equation: Time evolution of the distribution of gyrocenters F in 5D phase space





### **In standard GENE**

• Some intermediate steps:

... normalize ....

- ... split distribution into background and flucuating part "delta-f approach":  $F = F_0 + f_1$
- ... transform to field- aligned coordinates ...
- Collect all time derivatives on left hand side of equation for explicit time solver:

$$\frac{\partial f_1}{\partial t} - \frac{q}{mc} \frac{\partial \bar{A}_{1||}}{\partial t} \frac{\partial F_0}{\partial v_{||}} = \dots$$

Introduce new distribution function g:

$$g_1 \coloneqq f_1 - \frac{q}{mc} \bar{A}_{1||} \frac{\partial F_0}{\partial v_{||}} \longrightarrow \frac{\partial g_1}{\partial t} = \dots$$

 Works generally well, but tends to be unstable in global, nonlinear, electromagnetic simulations



. 0 4

## Upgrade

- following the proof-of-principle by P. Crandall [1] based on [2]:
  - keep unmodified distribution f

$$\frac{\partial f_1}{\partial t} = \frac{q}{mc} \frac{\partial \bar{A}_{1||}}{\partial t} \frac{\partial F_0}{\partial v_{||}} + R_b$$

#### All remaining terms

- use Ampere's law 
$$\nabla_{\perp}^2 A_{\parallel} = -\frac{4\pi}{c}j$$
 to derive a field equation for  $E_{\parallel}^{\text{ind}} = -\frac{1}{c}\frac{\partial A_{\parallel}}{\partial t}$ 

$$\left(\nabla_{\perp}^{2} + \frac{4\pi}{c^{2}}\sum_{b}\frac{q_{b}^{2}}{m_{b}}\int d^{3}v\mathcal{G}^{\dagger}v_{\parallel}\frac{\partial F_{b}}{\partial v_{\parallel}}\mathcal{G}\right)E_{\parallel}^{\mathrm{ind}} = \frac{4\pi}{c^{2}}\sum_{b}q_{b}\int d^{3}v\mathcal{G}^{\dagger}\{v_{\parallel}R_{b}\}$$

- solve numerically

[1] Crandall, 2019, PhD Thesis, UCLA [2] Reynders, 1993, PhD Thesis, Princeton



#### **Changes in GENE model**

$$\frac{\partial}{\partial t} \frac{\hat{f}_{1\sigma}}{\partial t} = \frac{1}{\hat{C}} \frac{\hat{B}_{0}}{\hat{B}_{0}} \left[ \hat{\omega}_{n\sigma} + \hat{\omega}_{T\sigma} \left( \frac{\hat{v}_{1}^{2} + \hat{\mu}\hat{B}_{0}}{\hat{T}_{0\sigma}/\hat{T}_{0\sigma}(x_{0})} - \frac{3}{2} \right) \right] \hat{F}_{0\sigma} \hat{v}_{T\sigma}(x_{0}) \hat{v}_{1|} \partial_{y} \hat{A}_{1|} \\
- \left\{ \frac{1}{\hat{C}} \frac{\hat{B}_{0}}{\hat{B}_{0||}} \left[ \hat{\omega}_{n\sigma} + \hat{\omega}_{T\sigma} \left( \frac{\hat{v}_{1}^{2} + \hat{\mu}\hat{B}_{0}}{\hat{T}_{0\sigma}/\hat{T}_{0\sigma}(x_{0})} - \frac{3}{2} \right) \right] \hat{F}_{0\sigma} \\
+ \frac{\hat{B}_{0}}{\hat{B}_{0||}} \frac{\hat{T}_{0\sigma}(x_{0}) \hat{\mu}\hat{B}_{0} + 2\hat{v}_{1|}^{2}}{\hat{B}_{0}} \hat{K}_{y} \hat{F}_{0\sigma} + \frac{\hat{B}_{0}}{\hat{D}_{0}} \frac{\hat{T}_{0\sigma}(x_{0})}{\hat{D}_{0}} \frac{\hat{v}_{1}^{2}}{\hat{D}_{0}\sigma} - \frac{3}{2} \right) \right] \hat{F}_{0\sigma} \\
- \frac{\hat{B}_{0}}{\hat{B}_{0||}} \frac{\hat{T}_{0\sigma}(x_{0}) \hat{\mu}\hat{B}_{0} + 2\hat{v}_{1|}^{2}}{\hat{B}_{0}} \hat{K}_{y} \hat{F}_{0\sigma} + \frac{\hat{B}_{0}}{\hat{D}_{0}} \frac{\hat{T}_{0\sigma}(x_{0}) \hat{v}_{1}^{2}}{\hat{D}_{0}\sigma} \hat{C} \hat{\beta}_{rd} \frac{\hat{p}_{0}}{\hat{D}_{0}} \hat{\omega}_{\rho} \hat{v}_{0\sigma} \right\} \\
- \frac{\hat{B}_{0}}{\hat{B}_{0||}} \frac{\hat{T}_{0\sigma}(x_{0}) \hat{\mu}\hat{B}_{0} + 2\hat{v}_{1}^{2}}{\hat{B}_{0}} \hat{K}_{y} \hat{k}_{0} \hat{v}_{1} \hat{h}_{0} \\
- \frac{\hat{B}_{0}}{\hat{D}_{0}} \frac{\hat{T}_{0\sigma}(x_{0}) \hat{\mu}\hat{B}_{0} + 2\hat{v}_{1}^{2}}{\hat{B}_{0}} \hat{K}_{x} \hat{k}_{0} \hat{v}_{1} \hat{h}_{0} \\
- \frac{\hat{B}_{0}}{\hat{D}_{0}} \frac{\hat{T}_{0\sigma}(x_{0}) \hat{\mu}\hat{B}_{0} + 2\hat{v}_{1}^{2}}{\hat{B}_{0}} \hat{K}_{x} \hat{k}_{0} \hat{v}_{1} \hat{h}_{0} \\
- \frac{\hat{B}_{0}}{\hat{D}_{0}} \frac{\hat{T}_{0\sigma}(x_{0}) \hat{\mu}\hat{B}_{0} + 2\hat{v}_{1}^{2}}{\hat{B}_{0}} \hat{K}_{x} \hat{k}_{0} \hat{v}_{1} \hat{h}_{0} \\
- \frac{\hat{B}_{0}}{\hat{D}_{0}} \frac{\hat{T}_{0\sigma}(x_{0}) \hat{\mu}\hat{B}_{0} + 2\hat{v}_{1}^{2}}{\hat{B}_{0}} \hat{K}_{x} \hat{k}_{0} \hat{v}_{1} \hat{h}_{0} \\
- \frac{\hat{B}_{0}}\hat{V}_{0}(x_{0}) \frac{\hat{\mu}\hat{B}_{0} + 2\hat{v}_{1}^{2}}{\hat{B}_{0}} \hat{K}_{x} \hat{h}_{x} \hat$$



# **Verification of implementation**

Global, linear  $\beta$ -scan



 $\rightarrow$  Upgrade agrees with global, linear results of code benchmark



#### **Implementation details**

- Implementation of f-version:
  - fully integrated into GENE master branch (one switch in input parameters)
  - Compatible with block-structured velocity grids:
    - speed up < x10 (depending on profiles)</li>

- requires additional field equation for E<sub>ind</sub> and nonlinear term
  - ca. 30% more computationally expensive



<sup>[</sup>D Jarema et al, CPC, 2017]



#### Conclusions

I. f-version upgrade of GENE code enables stable global, nonlinear, electromagnetic pedestal simulations



# Part II: Turbulence characterization in AUG pedestal



### **ELMy H-mode pedestal from AUG**



- NBI + ECRH heating,  $P_{tot} \sim 8.7 MW$
- On-axis B-field -2.5 T, plasma current 1MA
- ELM- synchronized profiles (6ms after ELM, almost pre-ELM)
- pressure-constrained magnetic equilibrium

[1] Cavedon et al., PPCF, 2017













- Ion scales: Top: TEM/MTM  $\rightarrow$  Center: ITG/KBM Growth rate gap at  $\rho_{tor}$ = 0.94 (blue)
- Electron scales: ETG with additional intermediate k<sub>y</sub> ETG instabilities towards pedestal center
- Overall growth rates increase towards pedestal center/ foot

TEM: Trapped Electron Mode MTM: Micro Tearing Mode ETG: Electron Temperature Gradient Mode ITG: Ion Temperature Gradient Mode



#### **Pressure and magnetic shear effect**







## **Global, ion scale: Turbulent heat fluxes**



 $ho_{tor}$ 

#### **Connecting linear instabilities and nonlinear modes**



- Linear frequencies remain present at pedestal top and center
  - → encouraging for quasi-linear models in pedestal
- MTM is suppressed in global, nonlinear simulations

Blue background: Nonlinear frequency distribution



#### **Connecting linear instabilities and nonlinear modes: Cross phases**

Cross phases Electrons (nonlin x=089; lin x=0.88,kxcenter=max)



Cross phases Electrons (nonlin x=097; lin x=0.97,kxcenter=max)



→ Cross phases support that some linear mode characteristics survive in particular at pedestal top





### **Turbulent heat flux structure in pedestal**



Heat flux due to ion-scale fluctuations
 vanishes in pedestal center



### **Turbulent heat flux structure in pedestal**



- Heat flux due to ion-scale fluctuations vanishes in pedestal center
- ETG takes over electron heat transport in steep gradient region from TEM at pedestal top
- ETG transport very sensitive to gradients (stiff profile)

[1] Viezzer et al., PPCF, 2020



#### Conclusions

- I. f-version upgrade of GENE code enables stable global, nonlinear, electromagnetic pedestal simulations
- II. Transport in AUG #31529 pre-ELM pedestal is multi-channel & multi-scale:
  - Electrostatic TEM with electromagnetic MTM contributions at pedestal top
  - ExB and mag. shear strongly suppress heat flux in all ion-scale channels
  - Dominant electron heat flux changes scale across pedestal: From TEM to ETG
- → Leppin et al., JPP, 2023, https://doi.org/10.1017/S0022377823001101

## Part III: JET pedestal







## **ELMy H-mode pedestal from JET**





- ELMy H-mode JET #97781 (hybrid scenario, high beta)
- pre-ELM profiles
- P<sub>tot</sub>= 33 MW





- Pedestal top: ITG (in contrast to TEM @ AUG) & ETG
- Pedestal center / foot: mostly ETG (extending to ion scales) small ITG-like peak
- ETG character (slab vs toroidal) depends on k<sub>y</sub> and k<sub>x</sub> i.e. ballooning angle (analysis ongoing)
  - → see also recent studies by Chapman et al., Nucl. Fusion, 2022
     Parisi et al., Nucl. Fusion, 2020 / 2022

## Pedestal transport sensitive to ExB shear and impurities



Radially averaged  $\rho_{tor} = 0.92 - 0.99$ 



## **Turbulent heat flux profile**





- Similar structure to AUG but smaller region of vanishing heat flux
- Electron heat flux in steep gradient region due to ion-scale fluctuations survives
- With current gradients unreasonably high peak heat flux in outer core
- Less ion heat flux in pedestal center than reported in Hatch et al., Nucl. Fusion, 2019



#### Conclusions

- I. f-version upgrade of GENE code enables stable global, nonlinear, electromagnetic pedestal simulations
- II. Transport in AUG #31529 pre-ELM pedestal is multi-channel & multi-scale:
  - Electrostatic TEM with electromagnetic MTM contributions at pedestal top
  - ExB and mag. shear strongly suppress heat flux in all ion-scale channels
  - Dominant electron heat flux changes scale across pedestal: From TEM to ETG
- → Leppin et al., JPP, 2023, https://doi.org/10.1017/S0022377823001101
- **III.** Transport in JET #97781 pre-ELM hybrid H-mode pedestal:
  - Dominant ITG contribution at pedestal top
  - Sensitive to ExB shear and impuritity level (turbulent ion-scale transport)
  - Non-vanishing electron heat flux by ion-scale fluctuations in pedestal center





#### E-mail: leonhard.leppin@ipp.mpg.de

**EURO***fusion* 

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 10102200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for fhem.

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK | LEONHARD LEPPIN |PPPL THEORY RESEARCH SEMINAR, 02. FEB. 2024

# JET ExB shear and impurities





# Focus on Be, because it has strongest main ion dilution for given $Z_{eff}$



## JET Impurities lower growth rates





## **Other profiles JET**







## Heat flux spectrum JET









#### **ELMy H-mode pedestal from AUG**





# **Heat flux spectrum AUG**





#### **Full profiles AUG**





#### **Other profiles AUG**



#### **Close to linear KBM threshold**



# The pedestal is close to a linear KBM threshold. (In agreement with [4]) Distance decreases towards pedestal foot.



#### KBM: Kinetic Ballooning Mode

[4] Hatch et al, Nucl. Fus., 2015



#### Dangers of local, nonlinear simulations on ionscales in pedestal center

**Fluctuation contours** 



- short- circuiting of eddies across radial boundary condition, even for large boxes  $\rightarrow$  heat flux not sensible
- high drive over large domain, even though in reality highly localized



# **AUG: Slab and toroidal ETG**



#### Simulation parameters Local, linear



#### 6.1.1. Linear, local simulations

- 2 species, experimental  $\beta$ , realistic electron to ion mass ratio  $m_e/m_D = 1/3670$ , Landau collision operator.  $E \times B$  shear was not used to avoid Floquet modes.
- Resolution:  $n_x = 18$ ,  $n_{ky} = 1$ ,  $n_z = 36$ ,  $n_v = 32$ ,  $n_w = 16$ .
- Box size: lv=3.1, lw=11.
- Convergence tests with increased parallel resolution  $(n_z = 144)$  and increased velocity space resolution  $(n_v = 128, n_w = 32)$  were performed.

#### **Simulation parameters ETG nonlinear**



6.2.2. Nonlinear, local ETG simulations

- 1 kinetic species (electrons), adiabatic ions, experimental  $\beta$ , Landau collision operator, no  $E \times B$  shear.
- Resolution:  $n_x = 512$ ,  $n_{ky} = 64$ ,  $n_z = 288$ ,  $n_v = 32$ ,  $n_w = 16$ .
- Box size: lv=3, lw=9, lx=3.5.
- Convergence tests for radial resolution, radial box size and parallel resolution (up to nz=576) were performed for the position  $rho_{tor} = 0.97$ .

#### Simulation parameters global, nonlinear



6.1.3. Nonlinear, global, ion scale simulations

- 2 species, experimental  $\beta$ , realistic electron to ion mass ratio  $m_e/m_D = 1/3670$ , Landau collision operator. With  $E \times B$  shear when indicated.
- Resolution:  $n_x = 512$ ,  $n_{ky} = 32$ ,  $n_z = 48$ ,  $n_v = 32$ ,  $n_w = 16$ .
- Box size: lv=3.45, lw=14.23, lx=72.
- Boundary conditions: Dirichlet with radial buffer zones (5% percent of domain at both boundaries), in which the distribution function is damped by fourth-order Krook operators.
- Performed with block-structured velocity grids (Jarema et al. 2017) with 4 blocks.
- Performed in single-precision floating-point format.

#### Validity of gyrokinetics in pedestal



Gyrokinetic derivation assumes small parameter  $\rho/L \ll 1$ :



0.15 << 1 ? Still small enough?...