PPPL

Frontiers Colloquia

The Frontiers of Plasma Physics colloquium is jointly sponsored by PPPL and the Journal of Plasma Physics.

A full list of upcoming colloquia can be found on the JPP Frontiers of Plasma Physics Colloquium Upcoming Talks webpage.

Upcoming

  • Olga Alexandrova, LESIA, Observatoire de Paris, France Google Scholar
    #s1274, Thursday, 15 Apr 2021, 11:00am

Past

  • The runaway electron landscape of cooling plasmas
    Tünde Fülöp, Chalmers University of Technology, Sweden Google Scholar, abstract
    [#s1273, 08 Apr 2021]
    The phenomena of runaway acceleration in plasmas has general importance in many fields of physics, for example it is a candidate mechanism for lightning initiation in thunderstorms and electron acceleration in solar flares. In fusion plasmas, understanding of runaways has a great practical importance, as the severity of runaway avalanches increases strongly with plasma current. Therefore, generation of runaways is expected to be a serious issue in ITER and other high-current reactor-scale fusion devices. We will discuss the characteristics and consequences of runaway generation, as well as possible mitigation strategies in fusion devices.
  • HelioSwarm: Leveraging Multi-point, Multi-scale Observations to Uncover the Nature of Turbulence in Space Plasmas
    Kristopher Klein, University of Arizona Webpage, abstract
    [#s1272, 01 Apr 2021]
    There are many fundamental questions about the temporal and spatial structure of turbulence in space plasmas. Answering these questions is complicated by the multi-scale nature of the turbulent transfer of mass, momentum, and energy, with characteristic scales spanning many orders of magnitude. The solar wind is an ideal environment in which to measure turbulence, but multi-point observations with spacecraft separations spanning these scales are needed to simultaneously characterize structure and cross-scale couplings. Recently selected for phase A study for NASA’s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales. HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on questions of how energy is distributed in typical solar wind conditions, as well as in extreme conditions relevant to astrophysical plasmas.
  • Magnetic reconnection andplasmoid formation in black hole accretion flows
    Bart Ripperda, Flatiron Institute and Princeton University Webpage, abstract
    [#s1271, 25 Mar 2021]
    Plasmoids, or hotspots, forming due to magnetic reconnection in current sheets, are conjecturedto power frequent X-ray and near-infrared flares from Sgr A*, the black hole inthe center of our Galaxy. It is unclear how, where, and when current sheetsform in black-hole accretion flows. We show extreme resolution 3Dgeneral-relativistic resistive magnetohydrodynamics and 2D general-relativisticparticle-in-cell simulations to model reconnection and plasmoid formation inblack hole magnetospheres. Plasmoids can form in thin current sheets In theinner 15 Schwarzschild radii from the event horizon, after which they canmerge, grow to macroscopic hot spots of the order of a few Schwarzschild radiiand escape the gravitational pull of the black hole. Large plasmoids areenergized to relativistic temperatures via magnetic reconnection near the eventhorizon and they significantly heat the jet, contributing to itslimb-brightening. We find that only hot plasmoids forming in magneticallydominated plasmas can potentially explain the energetics of Sgr A* flares. Theflare period is determined by the reconnection rate, which we find to beconsistent with studies of reconnection in isolated Harris-type current sheets.
  • Studies of plasma confinement in a gas-dynamic trap

    Alexander Ivanov, Budker Institute of Nuclear Physics, Novosibirsk, Russia

    The gas dynamic trap (GDT) was invented by Vladimir Mirnov and Dmitrii Ryutov in Novosibirsk in the late 1970s. It is basically a version of a magnetic mirror which is characterized by a long mirror-to-mirror distance exceeding the effective mean free path of ion scattering into a loss cone, a large mirror ratio (R ~ 100) and axial symmetry. Under these conditions the plasma confined in a GDT is isotropic and Maxwellian. The plasma loss rate out of the end mirrors is governed by a set of simple gas-dynamic equations, hence the device's name. Plasma magnetohydrodynamic stability in GDT can be achieved through a favorable averaged pressure-weighted curvature of the magnetic field lines, as was initially proposed, or, alternatively through a sheared plasma rotation at periphery induced by electrically biased electrodes at the end wall. A high flux volumetric neutron source based on a GDT is proposed, which benefits from the high β achievable in magnetic mirrors. Axial symmetry also makes the GDT neutron source more maintainable and reliable, and technically simpler. This review discusses the results of a conceptual design of the GDT-based neutron source which can be used for fusion materials development and as a driver of fission–fusion hybrids. The main physics issues related to plasma confinement and heating in a GDT are addressed by the experiments at the GDT device in Novosibirsk. The review concludes by updating the experimental results obtained, a discussion about the limiting factors in the current experiments and a brief description of the design of a future experimental device for more comprehensive modeling of the GDT-based neutron source. Conceivable approaches to improvement of plasma confinement in a GDT are also considered which would allow to consider the concept application in a fusion reactor.
    [#s1262, 18 Mar 2021]
  • Waves, Turbulence, and Transport in Weakly Collisional, High-Beta Plasmas

    Matt Kunz, Princeton University

    Many space and astrophysical plasmas are so hot and dilute that they cannot be rigorously described as fluids. These include the solar wind, low-luminosity black-hole accretion flows, and the intracluster medium of galaxy clusters. All of these plasmas are magnetized and weakly collisional, with plasma beta parameters of order unity or even much larger (“high-beta”). In this regime, deviations from local thermodynamic equilibrium ("pressure anisotropies") and the kinetic instabilities they excite can dramatically change the material properties of such plasmas and thereby influence the macroscopic evolution of their host systems. This talk outlines an ongoing programme of kinetic calculations aimed at elucidating from first principles the physics of waves, turbulence, and transport under these conditions. Three key results will be featured. (1) Shear-Alfvén waves “interrupt” themselves at sufficiently large amplitudes by adiabatically driving a field-biased pressure anisotropy that both nullifies the restoring tension force and excites a sea of ion-Larmor-scale instabilities. (2) Ion-acoustic waves in a collisionless, high-beta plasma similarly excite Larmor-scale instabilities, which ultimately aid the waves' propagation by rendering the plasma more fluid-like and, therefore, incapable of Landau damping. (3) Pressure anisotropy generated either by turbulent fluctuations or by global expansion (as in the solar wind) qualitatively change the properties of magnetized turbulence, affecting plasma heating and the so-called “critical balance”. Contact with observations of the near-Earth solar wind and the intracluster medium of galaxy clusters will be made.
    [#s1253, 11 Mar 2021]
  • Plasma Modelling in Support of the STEP Fusion Reactor Programme, video

    Howard Wilson, University of York, UK

    STEP – the Spherical Tokamak for Electricity Production – aims to deliver a prototype power plant by 2040 that will deliver net electricity at the 100MW level. This is a challenging timescale, that will require disruptive changes to how we design and regulate. The plasma scenario presents some of the biggest challenges, and this talk will discuss some of them. A spherical tokamak plasma has some advantages over one at conventional aspect ratio, allowing access to high elongation and beta (ratio of thermal plasma pressure to magnetic field pressure), in a compact geometry. Therefore, while much of the physics in the two designs is similar, there are also key differences. For example, the compact nature means there is little space for a solenoid, so non-inductive current drive is essential; the low magnetic field and high density require novel radio frequency methods for this current drive; the high beta affects the micro-instabilities that drive plasma turbulence and influence confinement; magnetohydrodynamic instabilities must be controlled to limit disruptions while achieving high fusion power and bootstrap current fraction; novel systems are required to manage the exhaust power loads, especially for the inner divertor leg. This talk will explore progress and challenges in modelling these key physics issues in support of STEP.
    [#s1235, 04 Mar 2021]
  • Progress and Challenges in TAE's Quest Towards an FRC-Based Fusion Reactor
    Artem Smirnov, TAE Technologies, Inc

    TAE Technologies, Inc. (TAE) is a privately funded company pursuing a novel approach to magnetic confinement fusion, which relies on Field-Reversed Configuration (FRC) plasmas composed of mostly energetic and stable particles. This advanced FRC-based system simplifies the reactor design and could offer a path forward to clean, safe, and economical aneutronic p-B11 fusion. To validate the science behind the FRC-based approach to fusion, an active experimental program is underway at TAE’s state-of-the-art plasma research facility in Orange County, California. The core of the facility is the world’s largest FRC device named Norman. In Norman, tangential injection of variable energy neutral beams (15 – 40 keV hydrogen, up to 20 MW total), coupled with plasma edge biasing, active plasma control, and advanced surface conditioning, led to production of steady-state, hot FRC plasmas dominated by fast ion pressure. High-performance, advanced beam-driven FRCs were produced,1-4 characterized by (1) macroscopic stability, (2) steady-state plasma sustainment, and (3) dramatically reduced transport rates (more than an order of magnitude improvement over conventional FRCs). Collectively, these accomplishments represent a strong argument validating the FRC-based approach to fusion power. This talk will provide a comprehensive overview of the TAE experimental program.

    [#s1243, 26 Feb 2021]
  • Astrophysical collisionless shock formation and nonthermal electron acceleration in laboratory experiments

    Hye-Sook Park, Lawrence Livermore National Laboratory, USA

    Collisionless shocks are ubiquitous in astrophysical environments such as in supernova remnants, jets in active galactic nuclei and gamma ray bursts and are known to be responsible for cosmic ray acceleration. While the theory of diffusive, or Fermi, shock acceleration (DSA) is well-established, the plasma microphysics responsible for the generation of the shocks, the nature of their resulting magnetic turbulence residue, and the injection of particles into DSA is not yet well understood. With the advent of high-power lasers, laboratory experiments with high-Mach number, collisionless plasma flows can provide critical information to help understand the mechanisms of shock formation by plasma instabilities and self-generated magnetic fields. A series of experiments were conducted on Omega and the National Ignition Facility to observe: the filamentary Weibel instability that seeds microscale magnetic fields [1, 2]; collisionless shock formation (seen by an abrupt ~4x increase in density and ~6x increase in temperature); and electron acceleration distributions that deviated from the thermal distributions [3]. Experimental results along with theoretical interpretations aided by particle-in-cell simulations will be discussed. [1] H.-S. Park et al., High Energy Density Phys. 8, 38 (2012); [2] C. Huntington et al., Nat. Phys. 11, 173 (2015); [3] F. Fiuza et al., Nat. Phys. 16, 916 (2020).

    [#s1236, 25 Feb 2021]
  • Thermonuclear Fusion in an Equilibrium Z Pinch

    Uri Shumlak, University of Washington, USA and Zap Energy, Inc.

    The equilibrium Z pinch is a novel approach to magnetic confinement fusion because it does not rely on external magnetic field coils. Equilibrium conditions are reached through the use of sheared plasma flows, which enhance stability and provide a path to thermonuclear fusion. Simple geometry and strong scaling of fusion gain with pinch current form the cornerstones of this compact fusion device. The sheared-flow-stabilized Z pinch has been developed through integrated computational and experimental investigations at the University of Washington in collaboration with Lawrence Livermore National Laboratory. Experimental results demonstrate plasma stabilization, sustained thermonuclear fusion, and agreement with theoretical and computational predictions. Building on these advances, Zap Energy Inc. is developing a low-cost fusion reactor core based on the equilibrium Z pinch.

    [#s1239, 18 Feb 2021]
  • Plasma Physics Challenges on the Road to a Tokamak DEMOnstration Fusion Power Plant
    Hartmut Zohm, Max Planck Institute for Plasma Physics, Germany

    In the EU Roadmap to Fusion Electricity, DEMO is the step between ITER and a commercial power plant. It is supposed to generate net electricity and have a self-sufficient fuel cycle. The pre-conceptual studies carried out for a tokamak-based DEMO show that the plasma scenario cannot be simply transferred from the ITER Q=10 scenario. We will discuss the physics issues encountered and possible solutions how to overcome them. The focus of the talk will be on the plasma physics aspects, not on reactor integration, and therefore meant to be exciting for plasma physicists from all fields.

    [#s1242, 11 Feb 2021]
  • Random flows and rotation in galactic coronae
    Anvar Shukurov, Newcastle University, UK

    After a review and summary of the observational evidence for random flows and rotation at large altitudes (1-10 kpc) above the discs of spiral galaxies, I discuss the physical parameters of the off-planar gas and the energy sources of the random motions. I argue that the effects of the turbulent viscosity on large-scale gas flows are significant and propose an exploratory model of the viscous coupling of the rotating galactic disc and the corona.

    [#s1244, 28 Jan 2021]
  • Understanding the Building Blocks of the Solar Wind and How They Fit Together: Heat Flux, Radiation, and Alfven-Wave Turbulence
    Benjamin Chandran, University of New Hampshire, USA

    A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfven-wave energy flux that is generated by convective motions on the surface of the Sun. The solar wind and solar corona are also affected by the flux of heat, including conductive losses into the radiative lower solar atmosphere. Numerical simulations that account for the above physics are increasingly able to reproduce remote observations of the corona and solar wind. On the other hand, we still lack an analytic theory that provides formulas for key quantities such as the solar mass-loss rate. Analytic treatments are needed for several reasons. They deepen our understanding by distilling complex processes into their most essential elements, they show how different quantities scale with one another, and they encapsulate our understanding into a portable form that can be applied to other systems and used by anyone. In this talk, I will present a recently developed analytic theory of coronal heating and solar-wind acceleration that provides analytic formulas and intuitive explanations for the solar mass-loss rate, the solar-wind speed far from the Sun, the coronal temperature, the heat flux from the corona into the lower solar atmosphere, and the plasma density at the base of the corona.

    [#s1245, 21 Jan 2021]
  • Drift kinetic theory of alpha particle transport by tokamak perturbations
    Elizabeth Tolman, Institute for Advanced Study, USA

    Upcoming deuterium-tritium tokamak experiments are expected to have large energetic alpha particle populations. These experiments can be used to study the interaction between these alpha particles and perturbations to the tokamak’s electric and magnetic fields. In this talk, I will first describe why this behavior is important and interesting. Then, I will discuss a new drift kinetic theory to calculate the alpha heat flux resulting from a wide range of perturbation frequencies and periodicities. This theory suggests that the alpha heat flux caused by toroidal field ripple, one type of perturbation, is small. Applied to the toroidal Alfvén eigenmode (TAE), another type of perturbation, the theory suggests a significant alpha heat flux that scales with the square of the TAE amplitude. The TAE amplitude calculated from one saturation condition suggests that TAEs in SPARC, one upcoming deuterium-tritium experiment, will not cause significant alpha transport via the mechanisms in this theory. However, saturation above the level suggested by the simple condition, but within numerical and experimental experience, could cause significant transport.

    [#s1246, 14 Jan 2021]
  • Exploring the physics of turbulent collisionless shocks in conditions of laboratory experiments
    Anna Grassi, Sorbonne University, Paris, France

    Collisionless shocks are ubiquitous in astrophysical plasmas and play an important role in magnetic field generation/amplification and particle acceleration. While diffusive shock acceleration (DSA) is well established, the details of particle injection into DSA remain a long-standing puzzle, particularly for electrons. High-energy-density (HED) plasma experiments and kinetic plasma simulations offer a promising route to identify the dominant processes at play. Very recently experiments performed at the National Ignition Facility have observed for the first time the formation of high-Mach number collisionless shocks mediated by electromagnetic instabilities and nonthermal electron acceleration. I will discuss the physics behind shock formation and particle acceleration in these laboratory systems and how they can be connected to astrophysical models. Using large-scale, multi-dimensional particle-in-cell (PIC) simulations, we find that the inhomogeneous profiles of laser-ablated plasmas lead to shock formation that can be up to 10 times faster than previous models predicted. The shock front can also develop strong corrugations at the ion gyroradius scale, which can be controlled by changing the electron temperature of the flow. Finally, we show that electrons can be effectively accelerated to nonthermal energies and injected into DSA via a Fermi-like mechanism occurring within the finite, turbulent shock transition. These findings can help guide the development and interpretation for current experimental programs and open exciting prospects for studying the microphysics of turbulent collisionless shocks in the laboratory.
    [#s1247, 07 Jan 2021]
  • When will we be able to predict plasma confinement in fusion devices?
    Frank Jenko, IPP Garching, Germany

    It is a key goal of magnetic confinement fusion (MCF) research to develop and build devices that allow us to create a plasma at sufficiently high pressure and energy confinement time, so that Lawson's criterion for a burning plasma can be met. There was breathtaking progress along these lines between the 1970s and 1990s, largely based on a "trial-and-error" approach. With the preparation of ITER operation and attempts to design first versions of future fusion power plants, it became clear, however, that a more targeted "predict-first" approach is needed at this point to save significant amounts of time and resources in the further development of fusion energy. Fortunately, the power of High Performance Computing keeps growing at a remarkable speed, with exascale systems around the corner. These platforms open up new possibilities to solve the complex nonlinear equations underlying many observed phenomena in MCF plasmas, and to move from an interpretative to a truely predictive approach. In this context, computing, data analysis, and machine learning are increasingly intertwined to provide reliable predictions. So how and when will we be able to predict plasma confinement in fusion devices? This question will be at the heart of this presentation.
    [#s1258, 16 Dec 2020]
  • Some open questions in the plasma physics of cosmic rays
    Ellen Zweibel, University of Wisconsin, Madison, USA

    It's now widely recognized that cosmic rays have considerable influence on the dynamics and energy balance of thermal gas in and around galaxies. While it's their collisional interactions that render cosmic rays most directly visible, in many respects their collisionless interactions, mediated by kinetic scale plasma waves and instabilities, are more significant. These microscale interactions are now captured by fluid models and used in large scale simulations of galaxy formation and evolution, where they are revealing surprising behavior. After briefly reviewing the basics, I will discuss some open questions in the microphysics of cosmic ray - thermal gas coupling, and how the large scales react back on the small ones.
    [#s1259, 16 Dec 2020]
  • For a full list of past colloquia, see the JPP Frontiers of Plasma Physics Colloquium webpage.
    [#s1260, 01 Jan 2020]